Vague劃分
- 期刊名字:計(jì)算機(jī)科學(xué)
- 文件大?。?/li>
- 論文作者:梁家榮,劉力,伍華健
- 作者單位:廣西大學(xué)計(jì)算機(jī)與電子信息學(xué)院,玉林師范學(xué)院數(shù)學(xué)與計(jì)算機(jī)科學(xué)系
- 更新時間:2020-03-23
- 下載次數(shù):次
第36卷第11期計(jì)箅機(jī)科學(xué)ol.36209年11月Computer ScienceVague劃分梁家榮劉力2伍華健廣西大學(xué)計(jì)算機(jī)與電子信息學(xué)院南寧53004)(玉林師范學(xué)院數(shù)學(xué)與計(jì)算機(jī)科學(xué)系玉林5370002摘要根據(jù)vgue集具有真假隸屬度的特點(diǎn),首先提出了基于t模和t余模的真相容度、假相容度、真相等度和假相等度的概念。然后合理地利用真相容度、假相容度、真相等度和假相等度提出了半 vague劃分和 vague劃分的概念,并討論了它們的性質(zhì)。關(guān)鍵詞t模,t余模,剩余蘊(yùn)含,半 vague劃分, vague劃分LIANG Jia-rong LIU Li' WU Hua-jianSchool of Computer and Electronic, Guangxi University. Nanning 530004. China)Department of Mathematics and Computer Science, Yulin Normal University, Yulin 537000, China)2Abstract The concepts of degree of truth-compatibility, degree of false -compatibility degree of truthrequality, degreefalse-equality based on t-norm and t-conorm were introduced, because a vague set has the characteristic of truthmembership function and fase-membership function. Futhermore we presented the concepts of semivague partitions andvague partitions by using locically degree of truth compatibility, degree of false-compatibility degree of truthrequality,degree of false-equality, and we investigated the characters of semi-vague partitions and vague partitions.Keywords t-norm, t-conorm, Semi-vague partion, Vague partion此把經(jīng)典集合劃分理論、模糊劃分理論推廣到 vague集理論,1引言是一種很自然的想法。然而遺憾的是完整 vague劃分理論近年來,人工智能從研究內(nèi)容到研究方法都有了很大的尚未建立起來使得 vague集理論應(yīng)用到智能決策、人工智能發(fā)展研究人工智能的工具也在不斷地發(fā)展。作為處理不完及模式識別等領(lǐng)域受到了一定程度的限制。本文考慮到整和不完全信息智能系統(tǒng)的重要工具,模糊集理論自從 vague集有真假隸屬度的特點(diǎn),系統(tǒng)地研究了半 vague劃分和Zaden于1965年提出后1,其理論和應(yīng)用(例如在自動控制、 vague劃分及其關(guān)系,成功地解決了 vague集理論在劃分方面模式識別智能決策)取得了巨大的成就2。在傳統(tǒng)的模糊的不足,對豐富和發(fā)展 vague集理論具有重要的學(xué)術(shù)意義集中,一個元素x與一個集合X之間的關(guān)系由一個介于[01]之間的數(shù)(x)來表示它包含了支持和反對這一對象x隸2準(zhǔn)備工作屬于集合X的程度但無法表達(dá)既不反對也不支持這一對象定義111映射T:[0,1]×[0,1]→[0,訂],如果va,b,x隸屬于集合X的中立情況給許多實(shí)際問題(如投票模型、c,d∈[0,1]滿足條件醫(yī)療診斷和多目標(biāo)決策等)的研究和處理帶來了困難。為了(1)交換律:T(a,b)=T(b,a)解決這一問題,1986年 Atanassov提出了所謂的直角模糊(2)結(jié)合律:T(T(a,b),c)=T(a,T(b,c))集。 Atanassov提出用真隸屬度t和假隸屬度f兩個量來(3)單調(diào)性:a≤c,長≤dT(a,b)≤T(c,d)描述一個對象x和一個集合X之間的隸屬關(guān)系。后來,1993(4)邊界條件:T(1,a)=a年Gau和 Buehrer定義了一個所謂的 vague集。值得指出則稱T為t模(tnom)的是, Bustince和Burl在文獻(xiàn)[8]中證明 vague集就是直覺定義216映射S:[0,1]×[0,1][0,1,如果va,b,c模糊集。雖然, vague集理論和應(yīng)用已取得了一定的發(fā)d∈[o,1]滿足條件展),但與經(jīng)典集合理論和傳統(tǒng)的模糊集理論相比 vague(1)交換律:S(a,b)=S(b,a)集理論還有許多不盡完善的地方例如 vague劃分的相關(guān)理(2)結(jié)合律:S(S(ab),c)=S(aS(b,c)論目前少有文獻(xiàn)報(bào)道。由于經(jīng)典集合劃分理論模糊劃分等(3)單調(diào)性:a≤c,≤d→S(a,b)≤S(c,d工具已在數(shù)據(jù)挖掘和決策分類中起到了極為重要的作用因(4)邊界條件:S(a,0)=a到稿日期:20081224返修日期:20090227本文受國家自然科學(xué)基金項(xiàng)目(60564001),教育部“新世紀(jì)優(yōu)秀人才支持計(jì)劃”專項(xiàng)(NCET06-0756)廣西自然科學(xué)基金項(xiàng)目(桂科自0832286)資助,橐家榮(1966-),男,博土,博士后教授,主要研究方向?yàn)槿斯ぶ悄軘?shù)據(jù)挖掘模糊控制E-mail:liangir@gxu.edu.cn;劉力(1957-),男碩士教授,主要研究方向?yàn)槿斯ぶ悄苤悄芸刂?伍華健(1965-)男碩士教授主要研究方向?yàn)槿斯ぶ悄芫W(wǎng)絡(luò)可幕性分析則稱S為t余模( t-conom)或s模(snom)設(shè)A是論域X的 vague集(2),YsX。只考慮A在Y上3主要結(jié)果的 vague屬性時用Aly來表示,也就是當(dāng)x∈Y時tAy(x)=下面給出 vague半劃分和 vague劃分的定義4(x)AfAy(x)=A(x);當(dāng)xX-¥時tAy(x)和fAy(x)定義8設(shè)T是一個t模,S是一個t余模,是由若干都沒有意義個X上可形式化的 vague組成的集合,稱π是X上的一個半定義3設(shè)T和T2是兩個t模S1和S2是兩個t余 vague劃分,如果vA,B∈x,C(A,B)≤E(A,B)∧C(A,模稱t模(T1,S1)比t模(T2,S2)弱如果(Va,b∈[0,1])B)≥E(A,B)(T(ab)≤T2(a,b)∧S1(a,b)≥S2(a,b))。性質(zhì)4設(shè)T是一個t模,S是一個t余模,如果是X定義4設(shè)A是論域X上的一個 vague集稱kerA={x的一個半 vague劃分,那么對于任意的x中的A和B有Crx∈XAtA(x)=1AfA(x)=0}為A的核。若A的核非空,(A,B)=E(A,B)A(AB)=E(A,B)則稱A是一個可形式化的 vague集證明:設(shè)A,B∈x,而x1∈kerA,x2∈kerB,則定義5對于t模Tt余模S,C(A, B)=supT(tA(x),t(r))1)稱二元算子gr(x,y)=sup{zz∈[0,1]AT(x,z)≤>max(T(IA(xI), tB(xr)), T(A(x),tg(x2))y},x,y∈[0,1]為T的剩余蘊(yùn)含=max(ta(r,),ta(xz))2)稱二元算子w(x,y)=mf∈[0,1AS(z,y)≥x},E(A, B)=infAr(tA(r),tB(r))xy∈[0,1]為S的剩余蘊(yùn)含。S(b, bu)>b(6)Recognition Letters. 2002, 23: 221-225式(5)和式(6)是一個矛盾,因此G(A,A)≥E(A,A)11 De S K, Biswas R, Roy A R. An application of intuitionistic fuzzy綜上所述,x={A∈I}是X的一個半 vague劃分。sets in medical diagnosis]. Fuzzy Sets and Systems, 2001, 117.推論2設(shè)T是一個t模S是一個t余模,x={A4li∈[12] Schrijver E, Kerre e On the composition of intuitionistic fuI}是X上的一個 vague劃分,那么定理4中相應(yīng)的兩常數(shù)序y relations ]. Fuzzy Sets and Systems, 2003, 136: 333-361列{an},{}an∈[0,1,∈[0,1],叫+b≤1,i,j∈l可[la] Hung W L,wuJw. Correlation of intuitionistic fuzzy sets by由如下式子來決定centroid method[]. Information Sciences, 2002,144: 219-225(Vi, jED(au=C(A, A )=E(A, A )b=C(A, [14] Alaca C, Turkoglu D, Yildiz C Fixed points in intuitionistic fuzA; )=E(A,, Ay metric spaces[J]. Chaos, Solitons & Fractals, 2006,29:1073-證明因?yàn)镃(A,A)=出T(a(x),4(x)=T(aaa4),所以[15] Demirci M. The generalized associative law in vague groups andits applications-I[J]. Information Scien06,176:900936a=Ta;4n)≤C(A,A)=Pr(a,a0)≤a[16]胡寶清模糊理論基礎(chǔ)[M].武漢:武漢大學(xué)出版社,2004
-
C4烯烴制丙烯催化劑 2020-03-23
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-03-23
-
生物質(zhì)能的應(yīng)用工程 2020-03-23
-
我國甲醇工業(yè)現(xiàn)狀 2020-03-23
-
石油化工設(shè)備腐蝕與防護(hù)參考書十本免費(fèi)下載,絕版珍藏 2020-03-23
-
四噴嘴水煤漿氣化爐工業(yè)應(yīng)用情況簡介 2020-03-23
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-03-23
-
甲醇制芳烴研究進(jìn)展 2020-03-23
-
精甲醇及MTO級甲醇精餾工藝技術(shù)進(jìn)展 2020-03-23




