無軸螺旋連續(xù)熱解裝置上的生物質(zhì)熱解特性
- 期刊名字:農(nóng)業(yè)工程學報
- 文件大小:306kb
- 論文作者:王明峰,吳宇健,蔣恩臣,陳曉堃
- 作者單位:華南農(nóng)業(yè)大學材料與能源學院
- 更新時間:2020-06-12
- 下載次數(shù):次
第31卷第15期農(nóng)業(yè)工程學報Vol 31 No 152162015年8月Transactions of the Chinese Society of Agricultural EngineeringAug.2015無軸螺旋連續(xù)熱解裝置上的生物質(zhì)熱解特性王明峰,吳宇健,蔣恩臣,陳曉堃(華南農(nóng)業(yè)大學材料與能源學院,廣州510642)摘要:連續(xù)熱解是一種髙效的生物質(zhì)能轉(zhuǎn)化技術(shù),無軸螺旋式連續(xù)熱解裝置不僅可減輕送料部件的質(zhì)量,而且為熱解揮發(fā)性產(chǎn)物的排岀提供了有效空間,是極具發(fā)展前景的連續(xù)熱解裝置。為了解無軸螺旋式生物質(zhì)連續(xù)熱解特性,該文在無軸螺旋連續(xù)熱解裝置上,開展了以稻殼、花生殼和木薯莖稈為生物質(zhì)原料的熱解試驗,分析了3種生物質(zhì)在不同熱解溫度下的三態(tài)產(chǎn)物分布特性、熱解氣體組分變化規(guī)律及熱解炭的組織結(jié)構(gòu)和表面形貌特征。結(jié)果表明:炭產(chǎn)率隨熱解溫度升高逐漸下降,氣體產(chǎn)率逐漸上升,液體產(chǎn)率先上升再下降,在450℃時達到最大,產(chǎn)物分布特性與其他熱解反應器的一致;不同原料炭產(chǎn)率由高到低依次為:稻殼>花生殼>木薯莖稈,液體產(chǎn)率由高到低依次為:稻殼>花生殼>木薯莖稈,氣體產(chǎn)率與液體產(chǎn)率相反。熱解氣體組分受溫度影響較大,熱解溫度升高,可燃氣體組分含量不斷上升,不可燃氣體組分含量不斷下降,不同原料對氣體組分含量影響較小。熱解炭的工業(yè)分析結(jié)果與原料的工業(yè)分析結(jié)果存在相關(guān)性熱解溫度升高,熱解炭中揮發(fā)分含量逐漸下降,固定碳及灰分含量増加,木薯莖稈炭的揮發(fā)分含量最高,花生殼炭的固定碳含量最高,稻殼炭的灰分含量最高;低溫熱解炭的表面官能團較為豐富,隨熱解溫度升髙官能團種類逐漸減少;原料自身結(jié)構(gòu)特性對熱解炭的表面形貌影響較大,隨著熱解溫度升高,生物質(zhì)原料的表面結(jié)枃不斷被破壞,熱解炭表面岀現(xiàn)孔隙結(jié)構(gòu),花生殼炭與木薯莖稈炭表面孔隙結(jié)構(gòu)比稻殼炭更為發(fā)達。關(guān)鍵詞:生物質(zhì);熱解;秸稈;無軸螺旋連續(xù)熱解裝置;產(chǎn)物分布;熱解氣組分;熱解炭特性doi:10.11975/sn.1002-6819.2015.15.030中圖分類號:TK62文獻標志碼:文章編號:1002-6819(2015)-15-021607王明峰,吳宇健,蔣恩臣,陳曉堃.無軸螺旋連續(xù)熱解裝置上的生物質(zhì)熱解特性[].農(nóng)業(yè)工程學報,2015,31(15)216-222.doi:10,11975/j.issn1002-6819.2015.15.030http://www.tcsae.orgWang Mingfeng, Wu Yujian, Jiang Enchen, Chen Xiaokun. Biomass continuous pyrolysis characteristics on shaftless screwconveying reactor[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 31(15)216-222.(inChinesewithEnglishabstractdoi:10.11975/j.issn.1002-6819.2015.15.030http://www.tcsae.org文獻[8]、[9]、[0在螺旋送料式連續(xù)熱解裝置上對玉米秸稈、小麥秸稈和稻殼進行了熱解特性研究,中國當前面臨著能源枯竭與環(huán)境污染的雙重危機,開表明,已有連續(xù)熱解設(shè)備能夠?qū)⑸镔|(zhì)原料轉(zhuǎn)化生成發(fā)新的潔浄可再生能源受到廣泛的關(guān)注,其中生物質(zhì)能作炭、生物油和熱解氣,在一定范圍內(nèi)隨著熱解溫度的為一種含能體能源,是清潔豐富的可再生能源,而中國升高,炭產(chǎn)率下降,氣體產(chǎn)率上升,液體產(chǎn)率先升高農(nóng)業(yè)生產(chǎn)剩余物尚缺乏有效的回收利用途徑,開展農(nóng)業(yè)生后降低。連續(xù)熱解的生物炭產(chǎn)率在34%~42%之間;物質(zhì)的開發(fā)利用研究具有深刻的意義和廣闊的前景生物油產(chǎn)率在35%左右,包括焦油和木醋液兩部分,熱解是生物質(zhì)能的一種重要利用形式,是指生物質(zhì)主要組分為酸、醇、酮、酚等有機物;熱解氣產(chǎn)率在原料在隔絕或者低氧的環(huán)境下受熱裂解的過程,主要生17%~23%之間,成分主要包括:H2、CO2、CO、CH成固體炭、可冷凝液體油和可燃氣體產(chǎn)物23。生物質(zhì)連及其他CHn等。續(xù)熱解是一種高效的熱解處理方式,受到國內(nèi)外研究學與現(xiàn)有的螺旋式連續(xù)熱解裝置相比,無軸螺旋式連者的重視,英國利茲大學及國內(nèi)的華南農(nóng)業(yè)大學、山東續(xù)熱解裝置不僅可減輕送料部件的質(zhì)量,而且為熱解揮省能源研究所、中科院蘭州化學物理研究所和浙江大學發(fā)性產(chǎn)物的排出提供了有效空間,是極具發(fā)展前景的連等科硏單位開展了以螺旋輸送器為核心部件的生物質(zhì)連續(xù)熱解裝置。目前,針對無軸螺旋式生物質(zhì)連續(xù)熱解特續(xù)熱解裝置的研究工作41性的研究較少。本文在自行研制的以無軸螺旋送料器為核心部件的連續(xù)熱解反應器上,開展了具有代表性的3種生物質(zhì)稻殼、花生殼和木薯莖稈的熱解試驗,分析生收稿日期:2015-05-04修訂日期:201507-14基金項目:科技部農(nóng)業(yè)科技成果轉(zhuǎn)化資金項目(201462E000壤植物質(zhì)原料的組分差異和熱解溫度對三態(tài)產(chǎn)物分布、熱解物機器系統(tǒng)技術(shù)國家重點實驗室開放課題(2014SKL-07)氣體組分變化規(guī)律及熱解炭的組織結(jié)構(gòu)和表面形貌的影作者簡介:王明峰,男,遼寧鞍山人,講師,主要從事生物質(zhì)能利用研究。廣響,并與已有探討裝置的適應州華南農(nóng)業(yè)大學材料與能源學院,510642。Emai:wangmingfeng@scau.edu.cn性,為不同生中國煤化工的確定和熱解※通信作者:蔣恩臣,男,黑龍江,教授,博士生導師,主要從事生物質(zhì)能CNMHG利用工程研究。廣州華南農(nóng)業(yè)大學材料與能源學院,510642產(chǎn)物利用提供lang e scau. eau. cn第15期王明峰等:無軸螺旋連續(xù)熱解裝置上的生物質(zhì)熱解特性217原料與裝置木科作物莖稈,纖維素、木質(zhì)素含量較為豐富。試驗用稻殼、花生殼和木薯莖稈分別購自于廣州某稻谷加工廠、江1原料本試驗以3種代表性農(nóng)業(yè)生物質(zhì)稻殼、花生殼和木薯蘇一植物肥料中心和廣西的木薯生產(chǎn)基地,原料經(jīng)粉碎后莖稈為原料,其組分分析見表1,其中,稻殼是禾本科在70℃電熱恒溫干燥箱內(nèi)烘干24h,統(tǒng)一過40目篩后裝袋密封,其工業(yè)分析結(jié)果見表1,工業(yè)分析方法參考國標植物外殼,主要含有纖維素、半纖維素成分;花生殼是豆科草本植物外殼,主要成分為木質(zhì)素;木薯莖稈是大戟灌GB/I287312012固體生物質(zhì)燃料工業(yè)分析方法。表1原料組分分析與工業(yè)分析Table 1 Proportion of three-component and proximate analysis of biomass materials組分分析 Three-componen工業(yè)分析 Proximate analysisMaterials纖維素半纖維素木質(zhì)素水分揮發(fā)分灰分固定碳19.0Rice husk花生殼16.9110.1074372733.8717.37木薯莖稈34.3723.816.394.512試驗裝置VERTEX70型紅外光譜儀分析表面官能團、利用荷蘭FEI試驗用無軸螺旋連續(xù)熱解裝置見圖1。熱解裝置由送公司ⅹL-30-ESEM型掃描電鏡觀察表面形貌,熱解氣體料系統(tǒng)、熱解反應系統(tǒng)和冷凝收集系統(tǒng)組成,包括調(diào)速組分含量利用安捷倫GC6820氣相色譜儀進行檢測。電機、進料漏斗、無軸螺旋輸送器、熱解爐體,溫控器炭箱、冷凝管等主要部件2結(jié)果與討論2.1無軸螺旋連續(xù)熱解裝置的冷態(tài)輸送特性23在常溫下開展無軸螺旋連續(xù)熱解裝置的冷態(tài)輸送特性試驗研究,控制驅(qū)動電機轉(zhuǎn)速,保證物料在熱解管內(nèi)停留時間為8min,試驗進行30min后停止,統(tǒng)計管路內(nèi)殘留生物質(zhì)原料質(zhì)量,結(jié)果見表2。表2冷態(tài)試驗管內(nèi)物料殘留量1調(diào)速器2驅(qū)動電動機3聯(lián)軸器4進料斗5熱解反應器6無軸螺旋輸 Table2 Residues of materials at normal temperature experiment送器7加熱爐8炭箱9.出氣口10冷凝管11伴熱帶12氣體回燒原料 Materials殘留量 Residues!g13伴熱帶溫控器14爐體支架15爐體溫控器16電機支架17.集氣閥1. Speed controller 2. Drive motor 3. Coupling joint 4. Feeder 5 Pyrolytic稻殼 Rice huskeactor 6.Shaftless-screw-conveyor 7 Heating furnace 8Biochar box花生殼 Peanut shellGas burming pipe24.813. Heating belt controller 14 Frame of heating furnace 15. Heating furnace木薯莖稈 Cassava stalk注:熱解管內(nèi)原料停留時間為8min,下同圖1生物質(zhì)無軸螺旋連續(xù)熱解裝置Note: Conveying residence time is Smin. The same as belowig. 1 Sketch of biomass continuous pyrolysis reactor熱解管內(nèi)物料輸送存在死角,物料在進料口附近區(qū)裝置工作原理如下:粉末狀生物質(zhì)原料經(jīng)由進料漏域形成殘留,不同原料的物料殘留量不同。冷態(tài)試驗中斗送入熱解反應管,由電機帶動無軸螺旋輸送器將物料木薯莖稈殘留量最大,花生殼次之,稻殼殘留量最小。推送至熱解反應器的高溫反應區(qū),物料在推送過程中完稻殼是禾本科纖維植物外殼,粉碎后更多呈現(xiàn)細密條狀,成熱解,生成的熱解炭落入保溫炭箱,熱解揮發(fā)物通過螺旋推送時物料間作用力更大,有利于完全送料。而花炭箱出氣口進入冷凝系統(tǒng),液體產(chǎn)物被冷凝收集,不可生殼、木薯莖稈中木質(zhì)素成分較高,粉碎后更多呈現(xiàn)較冷凝氣體引至炭箱底部點燃,保證炭箱溫度大于200℃,小的細片狀或顆粒狀,物料間作用力作用小,易滯留在防止熱解揮發(fā)物在炭箱內(nèi)冷凝。底,導致殘留量增大。1.3試驗方法2.2連續(xù)熱解三態(tài)產(chǎn)率分析連續(xù)熱解試驗反應溫度梯度為350、450、550、650℃稻殼、花生殼和木薯莖稈連續(xù)熱解三態(tài)產(chǎn)率及管內(nèi)熱解反應時間8min,炭箱升溫至200℃保溫,采用4組殘留量見表3,其中炭產(chǎn)率、液體產(chǎn)率和管內(nèi)殘留率通過冷凝管對熱解揮發(fā)物進行冷卻,冷卻水溫度為25℃,試稱量法獲得,氣體產(chǎn)率通過差減法求得。熱解條件下,驗中采用集氣袋收集部分不可冷凝氣體用于檢測。試驗管內(nèi)物料殘留量大小順序與冷態(tài)試驗相同,但熱解生成結(jié)束后,統(tǒng)計熱解炭、液產(chǎn)物及管路殘留物料的質(zhì)量的焦油氣回滲H中國煤化工鉆附在無軸螺旋原料及熱解炭表征方法:利用長沙友欣 YX-GYFX701上,導致熱解CNMHG產(chǎn)物分布結(jié)果型全自動工業(yè)分析儀進行工業(yè)分析、利用布魯克表明,熱解溫度,原科十拌久萬的析出量增大,218農(nóng)業(yè)工程學報(htp:/www.tcsae.org)2015年固體產(chǎn)物質(zhì)量減小,導致炭產(chǎn)率不斷下降14。不同原料不同原料對氣液兩相產(chǎn)率影響較大。液體產(chǎn)率由高連續(xù)熱解炭產(chǎn)率存在一定差別,稻殼與花生殼炭產(chǎn)率較到低依次為:稻殼>花生殼>木薯莖稈,氣體產(chǎn)率與液為接近,木薯莖稈最低。稻殼中灰分與固定碳含量之和體產(chǎn)率相反。這2部分產(chǎn)物主要由原料水分及揮發(fā)分生最大,達25.04%,熱解后主要存留于固體產(chǎn)物中,對炭成,其中揮發(fā)分起主導作用,由原料工業(yè)分析數(shù)據(jù)可見,產(chǎn)率貢獻較大,炭產(chǎn)率最高;花生殼兩者含量之和為3種原料中,木薯莖稈熱解生成的揮發(fā)性產(chǎn)物較多,且更21.24%,炭產(chǎn)率次之;而木薯莖稈兩者含量之和僅為容易發(fā)生二次裂解,利于生成氣體產(chǎn)物:稻殼熱解生成15.59%,且揮發(fā)分含量最高,對揮發(fā)性物質(zhì)產(chǎn)率貢獻較的揮發(fā)性產(chǎn)物較少且不利于二次裂解反應,因而更多地大,導致其炭產(chǎn)率最低。生成液體產(chǎn)物;花生殼則介于兩者之間表3原料連續(xù)熱解三態(tài)產(chǎn)率及管內(nèi)物料殘留量生物質(zhì)熱解產(chǎn)物分布特性很大程度上是由熱解條件Table 3 Charcoal, liquid and gas yield of continuous pyrolys(主要是熱解溫度)和原料的性質(zhì)造成的018。盡管生物materials and residues in tube質(zhì)原料特性和反應溫度有一定的區(qū)別,但是熱解產(chǎn)物得Materials Temperature/ Yield of液體產(chǎn)率氣體產(chǎn)率原料溫度charcoal/ Yield of Yield of殘留量率的變化規(guī)律基本一致。文獻[〕9]和[20在固定床熱解反iquid/% fuelgas/%R應器上的研究表明,隨溫度的升高,可燃氣和液相冷凝27.3311.0物的產(chǎn)率增大,而熱解炭產(chǎn)率減小。生物質(zhì)在無軸螺旋28.59連續(xù)熱解裝置上的熱解產(chǎn)物分布特性與其他熱解反應器Rice husk55031.372565028.26l1.62.3連續(xù)熱解氣體產(chǎn)物特性29.05花生殼33.4833.0429.23生物質(zhì)連續(xù)熱解氣體組分含量見圖2。生物質(zhì)原料中CPeanut55039.63元素比例最大,熱解生成的氣體主要由CO2和CO組成2,65026.720.2此外還含有可燃氣體H2、CH4、C2H4等。熱解氣體組分350木薯莖稈受溫度影響較大,隨著熱解溫度升高,CO2含量下降,15036.72Cassava55022.14270944.25296550℃連續(xù)熱解CO2相對含量約為35%,650℃連續(xù)熱解時則都低于30%;H2含量明顯上升且增幅顯著,與CO2存在競爭關(guān)系,650℃熱解時H2相對含量達20%~25%氣液兩相產(chǎn)率呈競爭趨勢。熱解溫度升高,液體產(chǎn)率文獻[2進行的玉米秸稈與稻殼熱解試驗同樣表明:當溫先升后降,在450℃時達到最大,此時,稻殼、花生殼和度從400℃增加到600℃,H2相對含量顯著升高,從4%木薯莖稈的液體產(chǎn)率分別為3524%、3304%和31.94%;升到28%,與本文研究結(jié)果相近;CO含量略微下降,總氣體產(chǎn)率則相反,先略微下降再上升,在450℃時最小。體上保持穩(wěn)定數(shù)值:CH4含量先升高后穩(wěn)定,350℃低溫450℃的熱解溫度為氣液產(chǎn)物競爭的分水嶺。硏究表明,熱解產(chǎn)生甲烷較少,450℃后保持相近數(shù)值,占15c熱解溫度髙于450℃時,會加劇液體產(chǎn)物二次裂解,生成20%;C2H4含量逐漸升高,但含量較低。因此,隨著熱氣體產(chǎn)物,導致液體產(chǎn)率下降。因此,欲獲得液體產(chǎn)物,解溫度升高,熱解氣體產(chǎn)物中可燃氣體組分含量不斷升熱解反應溫度應控制在450℃附近:欲獲得氣體產(chǎn)物,應髙,不可燃氣體組分含量不斷下降,高溫連續(xù)熱解不僅進一步提高熱解溫度,增加液體產(chǎn)物的二次裂解15有利于氣體產(chǎn)物生成,而且能夠提高氣體品質(zhì)232熱解溫度 Pyrolysis temperature℃b Peanut shellc Cassava stalk圖2生物質(zhì)連續(xù)熱解氣體組分含量Fig 2 Gas不同熱解溫度下,3種原料的熱解氣組分變化趨勢基約占25%,可燃氣體相對含量達到75%。本一致,熱解原料對氣體組分含量影響不大,在試驗熱2.4連續(xù)熱解怗性解溫度范圍內(nèi),同一熱解溫度下不同原料各熱解氣組分2.4.1連續(xù)熱中國煤化工含量差別小于5%,相差不大,在650℃下3種原料的熱連續(xù)熱解CNMHG卩固定碳含量最解氣中H2約占25%、CO約占30%、CH4約占20%、CO2高,是熱解炭的主要結(jié)構(gòu)成分。隨著熱解溫度升高,熱第15期王明峰等:無軸螺旋連續(xù)熱解裝置上的生物質(zhì)熱解特性219解程度加深,生物質(zhì)中揮發(fā)分不斷分解析岀,獲得的熱冋原料熱解炭的官能團豐富度存在一定差異,花生殼炭解炭的產(chǎn)率不斷減小;而灰分及固定碳大部分存留于熱的表面官能團較豐富,稻殼炭表面官能團較少解炭中,其占總體比例逐漸增大,導致熱解炭中揮發(fā)分百分含量逐漸下降,灰分及固定碳百分含量上升650℃550℃表4生物質(zhì)熱解炭工業(yè)分析Table 4 Proximate analysis of bio-charcoal from continuouspyrolysissr A揮發(fā)灰分函蘭Materials Temperature/ volatile/% Ash/% Fixed carbon/%4000350030002500200015001000500波長 Wave length/cm315748,09Rice huskcharcoal49.22a Rice husk biochar5028550℃花生殼炭charcoal11.3267.166509.0174.24sF等13.23木薯莖稈炭Cassava stalk40003500300025002000150010005005767波長 Wave length/en55.33b.花生殼b. Peanut shell biochar不同生物質(zhì)熱解炭的工業(yè)分析存在差異,并與原料的工業(yè)分析結(jié)果相關(guān)。3種熱解炭的固定碳含量由高到低650℃依次為:花生殼炭>木薯莖稈炭>稻殼炭,揮發(fā)分含量由550℃高到低依次為:木薯莖稈炭>花生炭殼>稻殼炭,灰分含450℃量由高到低依次為:稻殼炭>木薯莖稈炭>花生殼炭。稻殼炭中固定碳含量低于木薯莖稈炭,主要是由于稻殼炭x5圖的灰分含量較高,占總體比例過大,導致其固定碳含量下降。40350380250200=150千05波長 Wave length/em2.4.2連續(xù)熱解炭表面官能團特性450、550、650℃熱解溫度下獲得的3種原料熱解炭c.木薯莖稈炭Cassava stalk biochar的紅外光譜(FT-IR)檢測結(jié)果見圖3圖3生物質(zhì)熱解炭紅外圖譜450℃熱解炭中,3392cm處的吸收峰主要是分子Fig 3 FT-IR spectra of bio-charcoal之間氫鍵締合的醇、酚的—OH伸縮振動,表明存在酚羥基或醇羥基結(jié)構(gòu):2958、2921cm4處的吸收峰主要2.4.3連續(xù)熱解炭表面形貌特性是烷烴中的C-H的伸縮振動;550、650℃熱解炭在此3種原料及其350、450、550、650℃熱解炭的掃描3個波數(shù)下的吸收峰消失。表明,隨著熱解溫度升高電鏡(SEM)表征結(jié)果如圖4,放大倍數(shù)為1600倍。熱解炭中的-OH基團和-CH2基團隨揮發(fā)物的析出而由SEM圖像可見,生物質(zhì)原料表面結(jié)構(gòu)較為平消失,生成CH4、C2H4、C2H6等氣態(tài)烴12。1415~經(jīng)熱解后,表面結(jié)構(gòu)被破壞,部分區(qū)域塌陷形成694cm1為_C=C和C=O振動峰,表明生物質(zhì)炭表面了凹凸不平的表面形態(tài),隨著熱解溫度繼續(xù)升高,含有羧基、羰基等酸性含氧官能團,此處峰面積減小,生了明顯的孔隙結(jié)構(gòu)。生物質(zhì)原料高溫熱解后,其中該類官能團不斷減少。1095cm處吸收峰是酚、醚的有機質(zhì)被逐漸分解,殘余的細胞結(jié)構(gòu)形成了炭的孔醇的_C=O伸縮振動及—C=C伸縮和_OH面外彎曲歐結(jié)構(gòu),溫度越高,表面結(jié)構(gòu)變化越明顯,大孔開始振動吸收峰,874、794cm1為芳香族化合物CH變膨脹,并發(fā)育出更多的微孔結(jié)構(gòu)1。不同原料熱解炭形振動吸收峰,此處峰面積逐漸增大,表明隨熱解溫度的表面形貌差異較大,花生殼炭與木薯莖稈炭表面孔升高,熱解炭縮合度上升,結(jié)構(gòu)高度芳香化,逐漸形成隙結(jié)構(gòu)比稻殼炭更為發(fā)達,主要是由原料自身結(jié)構(gòu)特芳香化炭結(jié)構(gòu)1281性造成的:花生殼本身具有起伏的表面結(jié)構(gòu),木薯莖低溫熱解生物質(zhì)炭中各類官能團較為豐富,隨熱解稈內(nèi)部為蓬松V凵中國煤化工性更有利于熱溫度升高,高波段的紅外吸收峰消失,官能團種類逐漸解炭孔隙生成CNMHG發(fā)達,不利減少,芳香化炭結(jié)構(gòu)逐漸增多。在相同熱解溫度下,不熱解生成孔隙結(jié)構(gòu)220農(nóng)業(yè)工程學報(htp:/www.tcsae.org)2015年20mTO um650℃稻殼炭b.650℃花生殼炭650℃木薯莖稈炭d.350℃稻殼炭350℃花生殼炭a 650C Rice husk charcoal b 650C Peanut shell charcoal c 650C Cassava stalk charcoal d. 350C Rice husk charcoal e 350C Peanut shell charcoal20mf.350℃木薯莖稈g.稻殼原料h.花生殼原料i木薯莖稈原料f 350C Cassava stalk charcoalg Rice huskh. Peanut shelli Cassava stalk圖4生物質(zhì)原料及不同溫度熱解炭SEM圖(1600×)ig. 4 SEM images of bio-materials and charcoal in different pyrolytic temperature(1600X)結(jié)論trends of biomass pyrolysis technology[]. Industrial Boiler,2011(2): 10-14. (in Chinese with English abstract)1)隨著連續(xù)熱解溫度升高,炭產(chǎn)率逐漸下降,液體阝3] Demirbas A. Biomass resource facilities and產(chǎn)率先升后降,在450℃時達到最大,稻殼、花生殼和木conversion processing for fuels and chemicals[J]薯莖稈的液體產(chǎn)率分別為35.24%、33.04%和31.94%,氣Conversion Management, 2001, 42(11): 1357-1378體產(chǎn)率與液體產(chǎn)率呈竟爭關(guān)系。生物質(zhì)在無軸螺旋連續(xù)4 I Chidi e efika, Chunfei wu, Paul t williams. Syngas解裝置上的熱解產(chǎn)物分布特性與其他熱解反應器的production from pyrolysis-catalytic steam reforming of waste致。熱解氣體主要由CO2和可燃氣體CO、H2、CH4、C2Hbiomass in a continuous screw kiln reactor[J]. Journal of組成,隨著熱解溫度升高,可燃氣體組分含量上升,不Analytical and Applied Pyrolysis, 2012, 95(5): 87-94可燃氣體組分含量下降,650℃連續(xù)熱解可燃氣體相對含5]蔣恩臣,蘇旭林,王明峰,等.生物質(zhì)連續(xù)熱解反應裝置量達75‰。熱解氣體組份含量受溫度影響較大,受原料的變螺距螺旋輸送器設(shè)計[.農(nóng)業(yè)機械學報,2013,44(2)影響不大。121—1242)熱解炭工業(yè)分析結(jié)果表明,隨著熱解溫度升高,Jiang Enchen, Su Xulin, Wang Mingfeng, et al. Design of揮發(fā)分含量逐漸下降,灰分及固定碳含量上升。不同原variable pitch spiral conveyor for biomass continuous料的熱解炭工業(yè)分析存在差異,且與原料的工業(yè)分析結(jié)pyrolysis reactor[J]. Transactions of the Chinese Society for果存在相關(guān)性Agricultural Machinery, 2013, 44(2): 121-124. (in Chinese3)熱解炭紅外光譜分析結(jié)果表明:隨著熱解溫度升with English abstract)高,熱解炭逐漸形成竻香結(jié)構(gòu),縮合度上升,官能團種6]王天崗,孫立,張曉東,等.生物質(zhì)熱解釋氫的實驗硏究J類逐漸減少。同一熱解溫度,不同原料熱解炭的官能團山東理工大學學報:自然科2006,20(5):41-43豐富度存在差異,花生殼炭的表面官能團較豐富,稻殼Wang Tiangang, Sun Li, Zhang Xiaodong, et al. The study of炭表面官能團較少。the behavior of hydrogen released from biomass pyrolysis[J]4)掃描電鏡結(jié)果表明,原料經(jīng)熱解后,表面結(jié)構(gòu)被Journal of Shandong University of Technology: Sci Tech破壞,部分區(qū)域塌陷形成了凹凸不平的表面形態(tài),隨著2006, 20(5): 41-43. (in Chinese with English abstract)熱解溫度的繼續(xù)升高,產(chǎn)生了明顯的孔隙結(jié)構(gòu)。原料自(]馬隆龍,顏涌捷,孔曉英,等.稻殼和木粉在內(nèi)循環(huán)流化身結(jié)構(gòu)特性對熱解炭的表面形貌影響較大,花生殼炭與床氣化爐中氣化實驗研究J.農(nóng)業(yè)工程學報,2006,22(增木薯莖稈炭表面孔隙結(jié)構(gòu)比稻殼炭更為發(fā)達???):151-154參考文獻]la Longlong, Y an Yongjie, Kong Xiaoying, et al. Study orasification experiment of wood powder and rice husk in[1] Caputo A C, Palumbo M, Pelagagge P M, et al. Economics ofeternally circulating fluidized bed gasifier[J]. Transactionsbiomass energy utilization in combustion and gasificationof the Chinese Society of Agriculture Engineeringplants: Effects of logistic variables[J]. Biomass andTransactions of the CSAE), 2006, 22(Supp 1): 151-154.(irBioenergy,2005,28(1):35-51.2]蔡曉峰,張濤.生物質(zhì)熱解技術(shù)的現(xiàn)狀、發(fā)展趨勢及研究8]施建軍,工業(yè)鍋爐,2011(2):10-1TH中國煤化工?;に嚺c裝置實驗研究JCNMHGCai Xiaofeng, Zhang Tao. Current status and developmentShi Jianjun, Bao Weitao. Experimental第15期王明峰等:無軸螺旋連續(xù)熱解裝置上的生物質(zhì)熱解特性221pyrolysis set for energization[J]. Anhui Chemical Industry, [17 Sohi s, Loez-Capel E, Krull E, et al. Biochar's roles in soil2008, 34(5): 25-28. (in Chinese with English abstract)and climate change: A review of research needs[R]. CSIRO9]王明峰,蔣恩臣,李柏松,等.稻殼連續(xù)熱解特性研究凹Land and Water Science Report, 2009太陽能學報,2012,33(1):168-172[18 OLaughlin J, McElligott K. Biochar for Environ-mentalWang Mingfeng, Jiang Enchen, Li Bosong, et al. Study onmanagement: science and technology J]. Forest Policy andcontinuous pyrolysis of rice husk[J]. Acta Energiae SolarisEconomics,2009,11(7):535-536sica.2012.3x1):168-172.( (in Chinese with English19曹青,鮑衛(wèi)仁,昌永康,等、玉米芯熱解及過程分析U燃abstract)料化學學報,2004,32(5):557-5621]袁艷文,田宜水,趙立欣,等.臥式連續(xù)生物炭炭化設(shè)備Cao Qing, Bao Weiren, Li Yongkang, et al. Pyrolysis and研制.農(nóng)業(yè)工程學報,2014,30(13):203-210reaction mechanism analysis of corncob[J] Journal of FuelYuan Yanwen, Tian Yishui, Zhao Lixin, et al. Design andChemistry and Technology, 2004, 32(5): 557-562.(inmanufacture of horizontal continuous biomass carbonizationChinese with English abstract)equipment[J. Transactions of the Chinese Society of20夏祖章,張百良,余泳昌,等,農(nóng)業(yè)生物質(zhì)裂解試驗研究UAgriculture Engineering (Transactions of the CSAE), 2014農(nóng)業(yè)工程學報,1995,11(3):31-3730(13): 203-210 (in Chinese with English abstract)Xia Zuzhang, Zhang Bailiang, Yu Yongchang, et al[l]l熊素敏,左秀鳳,朱永義.稻殼中纖維素、半纖維素和木Experiment study on the pyrolysis of agricultural Biomass[JI質(zhì)素的測定J.糧食與飼料工業(yè),2005(8):40-41.Transactions of the Chinese Society of AgricultureEngineering (Transactions of the CSAe), 1995, 11(3): 31cellulose, hemi-cellulose and ligin in rice hull[J]. Cereal feed37. ( in Chinese with English abstract)Industry, 2005(8): 40-41. (in Chinese with English abstract)[21 Muller-Hagedorn M, Bockhorn H. Pyrolytic behaviour of12]范鵬程,田靜,黃靜美,等.花生殼中纖維素和木質(zhì)素含different biomasses(angiosperms)(maize plants, straws and量的測定方法J.重慶科技學院學報:自然科學版,2008wood)in low temperature pyrolysis[]. Journal of Analyticaland Applied Pyrolysis, 2007, 79(1): 136-14010(5):64-65,67[22]閆桂煥,孫立,孫奉仲,等.玉米秸和稻殼熱解產(chǎn)物的分Fan Pengcheng, Tian Jing, Huang Jingmei, et al. On布規(guī)律J.燃燒科學與技術(shù),2010,16(4):358-362determination of cellulose and lignin of peanut shells[J]Journal of Chongqing University of Science and TechnologyYan Guihuan, Sun Li, Sun Fengzhong et al, DistributionNatural Science, 2008, 10(5 ): 64-65, 67, (in Chinese withproperties of pyrolysis products of corn stalks and ricehusks[J]. Journal of Combustion Science and Technology,English abstract)[13] Han L P, Steinberger Y, Zhao Y L, et al. Accumulation and2010, 16(4): 358--362 (in Chinese with English abstract)partitioning of nitrogen, phosphorus and potassium in[23]馬林轉(zhuǎn),何屏,王華,等.生物質(zhì)熱裂解實驗研究.云different varieties of sweet sorghum[J]. Field Crops Research南化工,2004,31(2):9-112011,120(2):230-240la Linzhuan, He Ping, Wang Hua, et al. Experiment study[14]楊海平.油棕廢棄物熱解的實驗及機理研究Φ.武漢:華on pyrolysis of biomass[J]. Yunnan Chemical Technology中科技大學,20052004, 31(2):9-11. (in Chinese with English abstractYang haiping. The experiment and mechanism Study on24呂鵬梅,熊祖鴻,王鐵軍,等,生物質(zhì)流化床氣化制取富Palm Oil Wastes Pyrolysis[D]. Wuhan: Wuhan Huazhong氫燃氣的研究[J.太陽能學報,203,24(6):758-764University of Science and Technology, 2005. (in ChineseLu Pengmei, Xiong Zuhong, Wang Tiejun, et al. Biomasswith english abstract)gasification in a fluidized bed to produce hydrogen rich15]廖艷芬,王樹榮,駱仲泱,等.纖維素快速熱裂解試驗gas[J]. Acta Energiae Solaris Sinica, 2003, 24(6): 758-764研究及分析[.浙江大學學報:工學版,2003,37(5):(in Chinese with English abstract)25]呂鵬梅,熊祖鴻,常杰,等.生物質(zhì)催化氣化制取富氫Liao Yanfen, Wang Shurong, Luo Zhongyang, et al燃氣的研究[.環(huán)境污染治理技術(shù)與設(shè)備,2003,4(11):Research on cellulose rapid pyrolysis[J] Journal of ZhejiangUniversity: Engineering Science, 2003, 37(5): 582-601(inLu Pengmei, Xiong Zuhong, Chang Jie, et al. Potential ofChinese with English abstrachydrogen production from biomass catalytic gasification[JI[16]許燕萍,謝祖彬,朱建國,等.制炭溫度對玉米和小麥生Techniques and Equipment for Environmental Pollution物質(zhì)炭理化性質(zhì)的影響J.土壤,2013,45(1):73-78Control, 2003, 4(11): 31-34.(in Chinese with EnglishXu Yanping, Xie Zubin, Zhu Jianguo, et al. Effects ofmh. YH中國煤化工pyrolysis temperature on physical and chemical properties of[26]郭平,王下生物質(zhì)廢棄物corn biochar and wheat biochar[J]. Soils, 2013, 45(1): 73-N,休大學學報:理學78.(in Chinese with English abstract)版,2014,52(4):855-860222農(nóng)業(yè)工程學報(htp:/www.tcsae.org)2015年Guo Ping, Wang guanzhu, Xu Meng, et al. Structure andbagasses-based biochar[J]. Chinese Journal of Tropicalcomposition characteristics of biochars derived from biomassCrops, 2014, 35(3):595-602(in Chinese with Englishwastes at different pyrolysis temperatures[J]. Journal of JilinabstractUniversity:" Science edition,2014.52(4):855-860.(in[28]李飛躍,謝越,石磊,等.稻殼生物質(zhì)炭對水中氨氮的吸Chinese with English abstract)附[.環(huán)境工程學報,2015,9(3):1221-1226.27]俞花美,陳淼,鄧惠,等.蔗渣基生物質(zhì)炭的制備、表征Li Feiyue, Xie Yue, Shi Lei, et al. Adsorption of ammoni及吸附性能[J.熱帶作物學報,2014,35(3):595-602itrogen in wastewater using rice husk derived biochar[JIYu Huamei, Chen Miao, Deng Hui, et al. PreparationChinese Journal of Environmental Engineering, 2015, 9(3)characterization and adsorption performance of1221-1226. (in Chinese with English abstractBilomass continuous pyrolysis characteristics on shaftlessscrew conveying reactorWang Mingfeng, Wu Yujian, Jiang Enchen, Chen XiaokunCollege of Materials and Energy, South China Agricultural University, Guangzhou 510642, China)Abstract: Technology of continuous pyrolysis is an effective method of disposing biomass, and the shaftless-screw-conveyingpyrolysis reactor, which is a kind of device with great development prospects, can not only reduce the weight of the conveyinmechanical components, but also provide effective space for the removal of volatile products. At present, there were fewresearches on the biomass continuous pyrolysis characteristics with the shaftless screw conveying reactor. So, the continuouspyrolysis of rice husk, peanut shell and cassava stalk was investigated on the shaftless-screw-conveying reactor, and theproduct distribution, the pyrolysis gas components and the pyrolytic charcoal characteristics of the 3 biomasses at differentpyrolysis temperatures were analyzed. The pyrolysis characteristics were compared with the existing pyrolysis technology, andthe material adaptability of the reactor was discussed. This paper provided a theoretical basis for the determination of theprocess parameters of biomass continuous pyrolysis and the utilization of pyrolysis products of different biomass materialsThe results showed that the distribution of pyrolysis products was consistent with other pyrolysis reactors. With the increase ofpyrolysis temperature, the charcoal yield decreased gradually, the gas yield increased, and the liquid yield increased firstly andthen decreased, which reached the maximum at 450C. The maximum liquid yield of rice husk, peanut shell and cassava stalkwas 35.249%0, 33.04%0 and 31.94% respectively. The gas yield and liquid yield presented a competitive relationship. Fordifferent bio-materials, the order of the charcoal yield from high to low was: rice husk> peanut shell cassava stalk, the liquidield from high to low was: rice husk> peanut shell> cassava stalk, and there were contrary rules between the gas yield andthe liquid yield. The pyrolysis gas was mainly composed of CO2, CH4, H2, C2H4 and CO and the gas component content wasinfluenced by temperature greatly. With the increase of reacting temperature, the content of the combustible gas rose, andnon-combustible gas components declined. The relative content of combustible gas in pyrolysis gas reached 75% at reactiontemperature 650C. Different bio-materials had little effect on the composition and content of the gas. The industrial analysisresults of the pyrolysis carbon were related to that of the raw materials. with the pyrolysis temperature increasing, the volatilecontent of the pyrolysis charcoal decreased gradually, and the ash and the fixed charcoal content increased. There werdifferences of the functional groups among different kinds of charcoals, the surface functional groups of peanut shell charcoalwas more abundant than that of rice husk charcoal In the 3 kinds of charcoals, the highest contents of volatile ash and fixedcarbon were obtained from cassava stalk charcoal, rice husk charcoal and peanut shell charcoal respectively. The structurecharacteristics of raw material had a greater influence on the surface morphology of carbon. The surface functional groups oflow-temperature-pyrolysis charcoal were very rich, the type of the surface functional groups reduced gradually with thepyrolysis temperature increasing. The surface structure of biomass materials continued to be destroyed, and pore structureappeared when the pyrolysis temperature increased. The structure characteristics of raw material had a significant influence onthe surface morphology of carbon, and the surface pore structure of peanut shell charcoal and cassava stalk charcoal was morethan rice husk charcoalKey words: biomass; pyrolysis; straw; shaftless screw conveying reactor;characteristics of pyrolytic charcoalPHs中國煤化工8 Ls compCNMHG
-
C4烯烴制丙烯催化劑 2020-06-12
-
煤基聚乙醇酸技術(shù)進展 2020-06-12
-
生物質(zhì)能的應用工程 2020-06-12
-
我國甲醇工業(yè)現(xiàn)狀 2020-06-12
-
石油化工設(shè)備腐蝕與防護參考書十本免費下載,絕版珍藏 2020-06-12
-
四噴嘴水煤漿氣化爐工業(yè)應用情況簡介 2020-06-12
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-06-12
-
甲醇制芳烴研究進展 2020-06-12
-
精甲醇及MTO級甲醇精餾工藝技術(shù)進展 2020-06-12
