血液動力學(xué)在血管重構(gòu)中的作用
- 期刊名字:基礎(chǔ)醫(yī)學(xué)與臨床
- 文件大小:544kb
- 論文作者:王桂清
- 作者單位:上海市腦血管病防治研究所
- 更新時間:2020-08-30
- 下載次數(shù):次
264基礎(chǔ)醫(yī)學(xué)與臨床 Basic medical sciences and Clinics2004.243)文章編號:1001-6325(2004)3-0264-05血液動力學(xué)在血管重構(gòu)中的作用王桂清上海市腦血管病防治研究所,上海201318)摘要咖液動力學(xué)主要是應(yīng)用流體力學(xué)理論和方法研究血液流動、血管生理和病理之間關(guān)系的一門邊緣性學(xué)科近年來國內(nèi)外學(xué)者認(rèn)為血液動力學(xué)因素對血管重構(gòu)有著重要的影響當(dāng)血液動力學(xué)發(fā)生改變后血管內(nèi)皮細(xì)胞通過跨膜蛋白、信號傳導(dǎo)和基因表達(dá)等將力學(xué)信息傳遞到細(xì)胞內(nèi)再經(jīng)過效應(yīng)分子將轉(zhuǎn)導(dǎo)信號最終作用于相應(yīng)的血管從而參與血管形態(tài)和功能的重構(gòu)過程。本文旨在簡述血液在流動過程中血液動力學(xué)因素對血管內(nèi)皮細(xì)胞的形態(tài)和功能、平滑肌細(xì)胞增殖和細(xì)胞外基質(zhì)的生成等的影響。關(guān)鍵詞:血液動力學(xué)血管重構(gòu)內(nèi)皮功能信號轉(zhuǎn)導(dǎo);基因中圖分類號:R322.1+2文獻(xiàn)標(biāo)識碼血管疾病是人類健康的頭號殺手全世界每年在血管分叉和拐彎等血液動力學(xué)突然發(fā)生變化的部死于心腦血管疾病的人數(shù)高達(dá)1500萬我國因心腦位血液動力學(xué)異常是血管重構(gòu)和動脈硬化發(fā)生的血管疾病所致的死亡也約占病人總死因的50%左重要成因。Fumg等2,3研究證實血液流動產(chǎn)生的右因此深入探討心腦血管疾病的發(fā)病機(jī)制對防治剪切力及其累加效應(yīng)作用于內(nèi)皮細(xì)胞可引起血管心腦血管疾病具有十分重要的理論意義和現(xiàn)實意壁組織重構(gòu)從而影響動脈粥樣硬化的發(fā)生、發(fā)展和義。血管重構(gòu) vascular remodeling湜是指機(jī)體在生長、病程轉(zhuǎn)歸。動物實驗表明急性高血壓可在數(shù)小時發(fā)育、衰老和疾病過程中血管為適應(yīng)體內(nèi)外環(huán)境的內(nèi)引起血管壁重構(gòu)導(dǎo)致內(nèi)皮細(xì)胞間間隙擴(kuò)大血漿變化而發(fā)生的形態(tài)結(jié)構(gòu)和功能的改變。血管重構(gòu)包蛋白含免疫球蛋白及纖維蛋白原)滲入內(nèi)皮下間括組份不變的重排( vascular rearrangement廂和結(jié)構(gòu)、隙泚外高血壓還可引起血管纖維化血管變硬以功能變化的重建( vascular reconstruction)血管重構(gòu)致該處血管彈性喪失4] Ameshima研究慢性肺動作為心血管疾病的病理基礎(chǔ)其成因一直是醫(yī)學(xué)研脈高壓動物模型血液動力學(xué)與內(nèi)皮細(xì)胞增殖的相互究領(lǐng)域的熱門課題之關(guān)系,他們對慢性肺動脈高壓大鼠的主肺動脈進(jìn)行1血液動力學(xué)變化與心血管疾病組織檢查觀察到肺動脈高壓大鼠肺動脈內(nèi)膜明顯增厚檢測內(nèi)皮細(xì)胞中過氧化物酶體增生物激活受血管是人體內(nèi)感受血液流動變化最迅速的器體時發(fā)現(xiàn)肺動脈高壓可誘導(dǎo)內(nèi)皮細(xì)胞中過氧化物官。已知血液流動過程中對血管產(chǎn)生的作用力主要酶體增生物激活受體的表達(dá)導(dǎo)致內(nèi)皮細(xì)胞增殖S。有血管壓力和血液流動時產(chǎn)生的摩擦力即分別為另外血液動力學(xué)異常也是血管功能損害的重要指垂直作用血管的血壓和平行于血管的剪切力。國內(nèi)征。臨床研究證實血液動力學(xué)參數(shù)是篩選卒中高外大多數(shù)學(xué)者都認(rèn)為血管壁血壓增加或血流減慢危人群和預(yù)測腦卒中發(fā)生的可靠指標(biāo)是人群發(fā)生所致剪切力降低都可誘導(dǎo)血管重構(gòu)隊從而導(dǎo)致血管卒中的重要信號而且卒中患者發(fā)病時血液動力學(xué)疾病的發(fā)生和發(fā)展。大量研究表明諸如動脈粥樣明顯硬化、高血壓、腦卒中等常見心腦血管疾病的發(fā)生機(jī)標(biāo)H中國煤化工與法檢測血液動力學(xué)指CNMHG中高危個體發(fā)現(xiàn)血液理都與血液流動時作用于血管的應(yīng)力密切相關(guān)1。動力學(xué)檢測能客觀反映腦血管功能損害和定量評估已知血管動脈硬化的部位并非隨機(jī)發(fā)生而是發(fā)生腦卒中危險度當(dāng)血液動力學(xué)明顯異常時該患者的收稿日期204-04-19004.243)基礎(chǔ)醫(yī)學(xué)與臨床 Basic medical sciences and clinic265腦卒中患病風(fēng)險大大增加,為正常人的7.3倍6生長因子等目標(biāo)基因的mRNA水平隊從而調(diào)節(jié)基因因此開展血液動力學(xué)與血管重構(gòu)關(guān)系的研究對于表達(dá)11此外切應(yīng)力對培養(yǎng)的內(nèi)皮細(xì)胞表達(dá)黏附闡明心血管疾病的發(fā)病機(jī)制、探索新的治療手段都分子如細(xì)胞間黏附分子- IC ICAM-1)血管間黏附分具有重大的理論和應(yīng)用意義。子-VCAM-1)和E選擇素( E-selectin)具有調(diào)節(jié)作2血液動力學(xué)對血管重構(gòu)的影響用實驗顯示層流剪切力選擇性地上調(diào)腫瘤壞死因子誘導(dǎo)內(nèi)皮細(xì)胞表達(dá)ICAM-12。血液動力學(xué)研究血管是血液流動的基礎(chǔ)而血液流動產(chǎn)生的作還表明31通過細(xì)胞表面黏附分子,循環(huán)白細(xì)跑的用力又是血管重構(gòu)的重要因素。大量研究表明],某一特殊亞群與內(nèi)皮細(xì)胞特異部位黏附可介導(dǎo)免血液流動對動脈管內(nèi)壁產(chǎn)生的作用力與血管形態(tài)和疫應(yīng)答等多種反應(yīng)。充分了解模擬機(jī)體內(nèi)環(huán)境條件功能密切相關(guān)是血管重構(gòu)的始動環(huán)節(jié)。血液動力下杋械力和黏附作用調(diào)節(jié)的細(xì)胞和分子?xùn)i制對探討學(xué)因素主要通過影響內(nèi)皮細(xì)胞的形態(tài)和功能、影響血管重構(gòu)過程內(nèi)皮細(xì)胞的結(jié)構(gòu)和功能改變是極其重血管平滑肌細(xì)胞的增殖和凋亡、調(diào)節(jié)細(xì)胞外基質(zhì)要的?!?extracellular matriⅸx,ECM舶的合成及消除等方面參與2.2血液動力學(xué)與血管平滑肌細(xì)胞血管的結(jié)構(gòu)和功能重建。血管平滑肌細(xì)胞( vasculmuscle2.1血液動力學(xué)與內(nèi)皮細(xì)胞VSMC)具有增殖、收縮和合成細(xì)胞外基質(zhì)等重要生血管內(nèi)皮細(xì)胞始終受到血管中流動的血液的流物學(xué)功能,體內(nèi)平滑肌細(xì)胞也受壓力和剪切力作體力學(xué)作用。已知高血壓致使血流沖擊血管內(nèi)膜,用,它們影響平滑肌表面大分子物質(zhì)的輸送在血管導(dǎo)致管壁增生、增厚管腔狹窄。管壁內(nèi)膜受損后易重構(gòu)中起著關(guān)鍵的作用。高血壓時因血管內(nèi)流體致膽固醇、脂質(zhì)等沉積,又加重了動脈粥樣斑塊形靜壓升髙血管壁張力增加,SMC表現(xiàn)岀旺盛的増成。如遇到吸煙、飲酒、高脂血癥、糖尿病等危險因殖特性此時血管最顯著的結(jié)構(gòu)變化是中膜肥厚。子時動脈粥樣硬化會更加嚴(yán)重更為廣泛。最近,研究發(fā)現(xiàn)高血壓時血管壁張力增加,NSMC的容積Chiu等體外培養(yǎng)匯合的內(nèi)皮細(xì)胞模擬內(nèi)膜發(fā)現(xiàn)剪增加57%彈力層增加30%膠原增加136%14最切力對血管內(nèi)皮細(xì)胞也有明顯影響在12dwn/cm作近 Vangieson等人也發(fā)現(xiàn)體內(nèi)結(jié)扎大鼠腸系膜微血用內(nèi)皮細(xì)胞24h后,內(nèi)皮細(xì)胞伸長的程度較管循環(huán)系統(tǒng)后在管徑為25-30m的血管內(nèi)血管2dwn/cm3低剪切力的區(qū)域要大,內(nèi)皮細(xì)胞在高剪切壁壓升高42.6±18)%~(17.1±2.3)%血管結(jié)扎力作用之下呈長梭形細(xì)胞長軸沿剪切力方向排列;5~10d后檢測血管璧內(nèi)不同表型的平滑肌細(xì)胞發(fā)而低剪切力作用下已定向的內(nèi)皮細(xì)胞發(fā)生重排內(nèi)現(xiàn),分化的血管平滑肌細(xì)胞長度明顯增長,表明皮細(xì)胞排列方向逐漸紊亂8υ。另外還有學(xué)者報道VSMC增殖活躍。用溴脫氧尿苷摻入法檢測平滑肌內(nèi)皮細(xì)胞對剪切力的這種適應(yīng)性取向過程呈作用大增殖情況同樣發(fā)現(xiàn)在未分化的血管平滑肌細(xì)胞中小和時間的依賴性ν。以上提示血液流動的作用力溴標(biāo)記的脫氧尿苷含量明顯增多。提示血管機(jī)械性可改變血管內(nèi)皮細(xì)胞的排列方向。負(fù)荷增加可直接誘導(dǎo)VSMC生長。而 Ueba H血管內(nèi)皮不僅是存在于血液與血管平滑肌之間等16研究發(fā)現(xiàn)切應(yīng)力降低可明顯誘導(dǎo)血管平滑肌的屏障結(jié)構(gòu)而且還是一個重要的內(nèi)分泌器官。高細(xì)胞增殖而剪切力在生理范圍內(nèi)人主動脈平滑肌血壓時血管壓力可調(diào)節(jié)內(nèi)皮細(xì)胞合成和分泌內(nèi)皮細(xì)胞沒有形態(tài)學(xué)變化且沿血流方向的整齊排列。平素1、前列環(huán)素PG纖維蛋白溶解酶原激活物抑滑肌細(xì)胞游走在多種心血管疾病的發(fā)生和發(fā)展中起制因子1。這些因子對血管重構(gòu)都非常重要。著十分重要的作用。 Redmond等將培養(yǎng)的人血Nerem報道剪切力可調(diào)節(jié)內(nèi)皮細(xì)胞分泌血管活性因管平中國煤化工力學(xué)或流量為26mL/子動脈水平剪切力(>15dm/cm2)下組織纖溶酶minCNMHG體中利用 Transwell游原激活物分泌增多靜脈水平剪切力1~4dlwn/cm2)走檢測儀檢測平滑肌細(xì)胞發(fā)現(xiàn)在23m/min流體中下分泌減少而內(nèi)皮素-1在靜脈水平切變應(yīng)力下分游走速度的血管平滑肌細(xì)胞是靜止力學(xué)條件下的2泌增加動脈水平下分泌減少與體內(nèi)觀察到的現(xiàn)象~3倍。此外血液動力學(xué)所致內(nèi)皮細(xì)胞分泌的內(nèi)致。許多研究指出剪切力能調(diào)節(jié)血小板源性皮素1血小板源性生長因子A或B等代謝產(chǎn)物對266基礎(chǔ)醫(yī)學(xué)與臨床 Basic medical sciences and Clinics2004.243)平滑肌細(xì)胞重構(gòu)也具有間接影響。引發(fā)細(xì)胞內(nèi)的各種磷酸化過程。G蛋白的分布不是2.3血液動力學(xué)與細(xì)胞外基質(zhì)隨機(jī)的而是有功能區(qū)域之分。許多研究者報道血FCM包括膠原、蛋白聚糖、糖胺多糖、彈力纖維液流動作用于內(nèi)皮細(xì)胞表面G蛋白引發(fā)內(nèi)皮細(xì)胞和糖蛋白等五大成分但習(xí)慣上將與基質(zhì)代謝密切內(nèi)的各種磷酸化過程,導(dǎo)致血管內(nèi)皮細(xì)胞沿血流方相關(guān)的酶如基質(zhì)金屬蛋白釃(MMPs)其特異抑制向發(fā)生重排。在無血液流動的條件下體外培養(yǎng)劑金屬蛋白酶組織抑制因子(TMP〕也包括在內(nèi)。的內(nèi)皮細(xì)胞成多邊形細(xì)胞內(nèi)微絲主要分布在細(xì)胞ECM除支持和連接組織細(xì)胞外還有著復(fù)雜的信號的周邊部并形成致密周圍帶細(xì)胞中央微絲很少轉(zhuǎn)導(dǎo)和功能調(diào)節(jié)作用。血液動力學(xué)可調(diào)節(jié)細(xì)胞外基在穩(wěn)定血流作用下內(nèi)皮細(xì)胞發(fā)生重排并有應(yīng)力纖質(zhì)的組織和組成這在血管疾病如動脈粥樣硬化的維 stress fibers形成其排列方向幾乎與細(xì)胞長軸平發(fā)病機(jī)制中起主要作用。 Oliver Thoumine18等使用行。這一過程是血液流動誘導(dǎo)細(xì)胞內(nèi)細(xì)胞骨架重平行平板流動腔將培養(yǎng)的牛主動脈內(nèi)皮細(xì)胞暴露于組其中最明顯的是F-肌動蛋白(F- actin)的重組F3odm/cm穩(wěn)定的層流剪切力之下3~48h然后檢測肌動蛋白可與G蛋白亞型cq和G形成復(fù)合物激內(nèi)皮細(xì)胞的纖維結(jié)合素Fn)層粘連蛋In)Ⅳ型活G蛋白介導(dǎo)的信號轉(zhuǎn)導(dǎo)21膠原(ColⅣ和玻璃體結(jié)合蛋白(Vn)的組成情況和在血管重構(gòu)早期血液流動作用于血管可誘導(dǎo)含量的變化。在靜力學(xué)條件下F、In和ColⅣ同時單核細(xì)胞與血管內(nèi)皮細(xì)胞黏附、遷移以及加快血小在細(xì)胞核周圍區(qū)以顆粒形式、在細(xì)胞外以纖絲的形板聚集,這些作用與細(xì)胞內(nèi)NFκB有關(guān)。已知NF式存在在剪切力條件下,Fn纖絲組成較粗的纖絲B是Rel蛋白家族成員,NF-kB/Rel家族成員共有束并具有沿剪切力方向排列的趨勢。除了這種組C- Rel ne-kBNF-κB2RelA和RelB。這些蛋白都有織形式的變化外這四種酸性蛋白的水平在剪切力一個300個氨基酸組成的氨基末端稱為Rel同源作用下也發(fā)生了變化。當(dāng)內(nèi)皮細(xì)胞暴露于流場下3區(qū)其中包括DNA結(jié)合部位、二聚體化部分、(B抑~6h后這四種酸性蛋白質(zhì)都上升,12h后Fn的水制蛋白結(jié)合區(qū)及核定位序列。大量研究表明NF-kB平下降2倍24~48h后又增加其它幾種成分也分是免疫、炎癥和應(yīng)激反應(yīng)的主要調(diào)控因子故NF-kB別有不同形式的變化。此外流體作用力還有誘導(dǎo)的激活可能是血管重構(gòu)的始動機(jī)制2靜息狀態(tài)肌動蛋白、細(xì)胞骨架的重構(gòu)和影響細(xì)胞外基質(zhì)金屬下NF-kB與其抑制亞單位(IkB)結(jié)合,以無活性的蛋白酶的表達(dá)。最近 Korshunoy val9等結(jié)扎小鼠左形式存在于細(xì)胞漿中NFkB的激活主要是通過降側(cè)頸動脈發(fā)現(xiàn)左側(cè)頸動脈血流量明顯減少而右側(cè)解kB來實現(xiàn)的。血液流動作用于血管內(nèi)皮細(xì)胞頸動脈血流量增加π0%,一周后檢測右側(cè)頸動脈,可通過細(xì)胞膜lB激酶使kκB磷酸化然后與多個發(fā)現(xiàn)細(xì)胞外基質(zhì)金屬蛋白酶αMMP9扆達(dá)上調(diào),泛酸結(jié)合進(jìn)而由蛋白激酶降解,從而激活NF-κB。細(xì)胞外基質(zhì)變化可能也與此有關(guān)游離于細(xì)胞漿中的NF-κB移位至細(xì)胞核與炎癥反應(yīng)3血液動力學(xué)影響血管重構(gòu)的途徑調(diào)節(jié)蛋白基因中的啟動子區(qū)域相結(jié)合,調(diào)控各種炎癥反應(yīng)基因轉(zhuǎn)錄形成各種信號下游產(chǎn)物如細(xì)胞因血液動力學(xué)作為外部信息,如何影響血管的生子腫瘤壞死因子、干擾素、白介素、黏附分子如細(xì)胞理功能以及相關(guān)疾病的發(fā)生和發(fā)展,也就是說,血間黏附分子、E選擇素、趨化因子單核細(xì)胞趨化蛋白液動力學(xué)信息如何傳入細(xì)胞,進(jìn)而引發(fā)血管重構(gòu),等2。最近$h2等報道,剪切力誘導(dǎo)內(nèi)皮細(xì)胞已成為近年來國內(nèi)外研究的熱點問題。有研究表白介素aβ亞基結(jié)合結(jié)合后通過蛋白激酸PKC和明血液流動作用于相應(yīng)的血管內(nèi)皮細(xì)胞調(diào)控由G/或Ⅸ信號傳至胞漿內(nèi),PIK活化促進(jìn)了RAS蛋白和核因子κBNF-kB介導(dǎo)的信號轉(zhuǎn)導(dǎo)通路,從和中國煤化工Raf-1向胞質(zhì)膜聚集而調(diào)節(jié)內(nèi)皮細(xì)胞多種基因表達(dá)導(dǎo)致血管的結(jié)構(gòu)和并由CNMHG磷酸化激動MAPK激功能改變∞]。酸(MEK導(dǎo)的MEK-ERK蛋白激酶的活化或?qū)е翯蛋白是一個膜內(nèi)側(cè)的異型三聚體家族這抑制NF-kB的IkB降解活化的NF-κB由胞漿移位家族的成員均與一類7次跨膜的受體蛋白直接作至胞核參與轉(zhuǎn)錄調(diào)節(jié)。用可以引起膜脂質(zhì)分解、cGMP生成及Ca2+的變化血液動力學(xué)作用相應(yīng)內(nèi)皮細(xì)胞可引起內(nèi)皮細(xì)胞004.243)基礎(chǔ)醫(yī)學(xué)與臨床 Basic medical sciences and clinic267內(nèi)基因表達(dá)的改變。有研究提示內(nèi)皮細(xì)胞將血液動它與剪切力的誘導(dǎo)作用有關(guān)。當(dāng)突變使這一序列發(fā)力學(xué)信號傳入到核內(nèi)調(diào)控相關(guān)基因的表達(dá)此作用生改變時對應(yīng)力的反應(yīng)性下降或消失。并且有研與其作用大小及時間有關(guān)。大量研究發(fā)現(xiàn)流體剪究表明sSRE與內(nèi)皮細(xì)胞內(nèi)DNA特異性結(jié)合,可使切力可調(diào)節(jié)早期基因的表達(dá)與調(diào)節(jié)血管張力、誘導(dǎo)基因產(chǎn)物上調(diào)和下調(diào)。這類基因產(chǎn)物包括:氧化血栓形成、控制細(xì)胞生命周期以及血管炎癥反應(yīng)有氮合酶內(nèi)皮素-1血小板衍化生長因子(PDGF-B),關(guān)233最近 Ohura m等利用DNA基因芯片技原癌基因 c-Fos d-Jm轉(zhuǎn)化生長因子TGF3)和單術(shù)檢測內(nèi)皮細(xì)胞DNA發(fā)現(xiàn),將內(nèi)皮細(xì)胞暴露在細(xì)胞趨化蛋白-1等2728的振蕩應(yīng)切力和層流應(yīng)切力24h后內(nèi)皮細(xì)胞大約有3%左右的基因表達(dá)增加一倍以上而4小結(jié)且在層流應(yīng)切力下內(nèi)皮細(xì)胞中有關(guān)DNA合成及細(xì)綜上所述血液流動可引起血管內(nèi)皮細(xì)胞、平滑胞生命周期的基因表達(dá)明顯降低迻多因素分析研究肌細(xì)胞和細(xì)胞外基質(zhì)改變是導(dǎo)致血管重構(gòu)的重要發(fā)現(xiàn)血液作用力影響在血管重構(gòu)中的作用基因表因素。血液動力學(xué)異常可通過內(nèi)皮細(xì)胞表面G蛋達(dá)〔如纖維蛋白溶酶原活化因子、纖維蛋白溶酶原抑白、受體和細(xì)胞內(nèi)轉(zhuǎn)導(dǎo)信號等多環(huán)節(jié)調(diào)節(jié)血管重構(gòu)制物內(nèi)皮素1,TCF-3和膠原蛋白NMak等利的發(fā)生和發(fā)展。因此針對血液動力學(xué)作用的不同環(huán)用基因技術(shù)在一些剪切力反應(yīng)基因的啟動子上游節(jié)有效控制血管重構(gòu)過程將是今后研究的重點為序列中確定了一種應(yīng)力響應(yīng)元件(SSRE),如在有效預(yù)防和治療心血管疾病提供新的思路PDGF-B的啟動子上游有一個 GAGACO的6b序列參考文獻(xiàn)1 ]Lovett JK, Rothwell PM. Site of carotid plaque ulcerationeffect of shear stress on interactions between vascular endotheliallation to direction of blood flow an angiographic and pathologicells and smooth muscle cell J ]. J Biomech, 2004 37 4)cal study]. Cerebrovasc Dis 2003, 16(4): 369-375[2 Fung YC Liu SQ. Elementary mechanics of the endothelium of [9 Butler PJ, Norwich G, Weinbaum S, et al. Shear stress in-blood vessels. J Biomech Eng[ J]. 1993;1151): 1-12duces a time-and position-dependent increase in endothelial cell3 Schmid-Schoenbein GW, Fung YC, Zweifach BW. Vasculamembrane fluidity[J]. Am J Physiol Cell Physiol, 2001, 280endotheliumrleukocyte interaction i sticking shear force in(4)962-C969venule[j]. Circ Res, 1975, 36(1): 173-8410 J Nerem RM, Harrison DG, Taylor WR, Alexander RW[4 Jalil JE, Janicki JS, Pick R, et al. Coronary vascular remodelHemodynamics and vascular endothelial biolog[J]. J Cardio-ng and myocardial fibrosis in the rat with renovascular hypervasc Pharmacol, 1993tension. Response to captopril[ J ]. Am J Hypertens 1991,4 11 ]Qiu Y, Tarbell JM. Interaction between wall shear stress and(1P1)51-55circumferential strain affects endothelial cell biochemical pr5 JAmeshima S, Golpon H, Cool CD, et al. Peroxisome proliferaluctior[J ]. J Vasc Res, 2000, 373): 147-157tor-activated receptor gamma( PPArgamma )expression is de- 12 Chiu JJ, Lee PL, Chen CN, et al. Shear stress increases Icreased in pulmonary hypertension and affects endothelial cellCAM-I and decreases VCAM-I and E-selectin expressions in-growth J]. Circ Res,2003,9x10):1162-1169duced by tumor necrosis factor alpha inendothelial cell[ J][6]王桂清錢國正楊永舉等.腦血管血液動力學(xué)指標(biāo)檢中國煤化工X4,2(1)73-79測參數(shù)的參考值J]中華流行病學(xué)雜志2003242)98[13]CAMH Get al. Fluid shear stress suppresses interleukin-8 production by vascular endothelial cells[7] Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and[J]. biorheology,2001,384):347-353its role in atherosclerosis J]. JAMA, 1999, 282 21) 2035-[ 14 ] Barbee KA, Mundel T, Lal R, et al. Subcellular distributionof shear stress at the surface of flow-aligned and nonaligned en-[8 ]Chiu JJ, Chen LJ, Chen CN, et al. A model for studying thdothelial monolayer[ J ]. Am J Physiol, 1995, 268(4 Pt 2)268基礎(chǔ)醫(yī)學(xué)與臨床 Basic medical sciences and Clinics2004.243)Hl765-1772endothelial cells growing on curved surface[ J ] Microcircula[15 Van Gieson EJ, Murfee WL, Skalak TC et al. Enhancedtion,2000,X6P1):19-427smooth muscle cell coverage of microvessels exposed to in- 22 Mohan S, Hamuro M, Koyoma K, et al. High glucose increased hemodynamic stresses in uid J]. Circ Res, 2003, 92duced NF-kappaB DNA-binding activity in HAEC is maintained(8):929-936under low shear stress but inhibited under high shear stress[16 Ueba H, Kawakami M, Yaginuma T. Shear stress as an inrole of nitric oxid[J ]. Atherosclerosis 2003, 171(2 ): 225bitor of vascular smooth muscle cell proliferation. Role oftransforming growth factor-beta 1 and tissue- type plasminogen 23 Hay DC Beers C, Cameron V, et al. Activation of NFactivato[ J ] Arterioscler Thromb Vasc Biol, 1997,17(8)paB nuclear transcription factor by flow in human endothelialcell[ J ]. Biochim Biophys Acta 2003, 1642( 1-2 ): 33[17 ] Redmond EM, Cullen JP, Cahill PA, et al. Endothelial cellsinhibit flow-induced smooth muscle cell migration: role of plas- 24 ]Liu Y, Chen BP, Lu M, Shear stress activation of SREBPI inminogen activator inhibitor-I[J ]. Circulation, 2001, 103(4)ndothelial cells is mediated by integrins[ J 1. Arterioscle597-603Thromb Vasc Biol, 2002, 221)76-8118 ]Thoumine 0, Nerem RM, Girard PR. Changes in organization 25 Chen BP, Li YS, Zhao Y, et al. DNA microarray analysis ofand composIthe extracellular matrix underlying culturedgene expression in endothelial cellendothelial cells exposed to laminar steady shear stres J]. Labstres J ]. Physiol Genomics, 2001, X 1)55-63Invest,1995734)S65-57626 Ohura N, Yamamoto K, Ichioka S, Global analysis of shear[19 Korshunoy VA, Berk BC. Flow-induced vascular remodelingstress-responsive genes in vascular endothelial cells[ J 1. Jin the mouse a model for carotid intima-media thickening J]Atheroscler Thromb, 2003, 105): 304-313Arterioscler Thromb Vasc Biol 2003, 23( 12 )2185-2191. 27 Malek AM, Izumo S. Control of endothelial cell gene expres-20 Shyy JY, Chien S. Role of integrins in endothelialion by flow[ J ] J Biomech, 1995, 28 12): 1515-1528mechanosensing of shear stres[J ] Circ Res, 2002, 91(9): [28 Fisslthaler B, Boengler K, Fleming I, et aL. Identification ofa cis-element regulating transcriptional activity in response21 Frame MD, Sarelius IH. Flow-induced cytoskeletal changes influid shear stress in bovine aortic endothelial cell J]. Endotllium,2003,104-5)267-275Hemodynamics and vascular remodelingWANG Gui-qingShanghai Institute of Cerebral Vascular Disease Prevention and Cure Shanghai 201318, ChinaAbstract: Hemodynamic forces play an active role in many physiological and pathophysiological processes of the cardiovascular system. Vascular remodeling changes of structure geometry and mechanical properties of the artery plays arole in many patho physiological processes. Several lines of evidence support a role for hemodynamic forces in the derelopment and progression of vascular cell such as endothelial cell, vascular smooth muscle cell and extracellular ma-trix. This review focuses on the role of hemodynamic forces in vascular remodeling relevant to vascular diseases. Cellularsignal involves a complex interplay between cytoskeletal and biochemical elements and results in changes in G proteinssignal transduction and gene expression. e review current knowled v凵中國煤化工 r remodeling and summarize the molecular mechanisms believed responsible for endothelialC N MH Emphasis on signal trans-Key words hemodynamics aascular remodeling endothelial function signal transduction gene
-
C4烯烴制丙烯催化劑 2020-08-30
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-08-30
-
生物質(zhì)能的應(yīng)用工程 2020-08-30
-
我國甲醇工業(yè)現(xiàn)狀 2020-08-30
-
石油化工設(shè)備腐蝕與防護(hù)參考書十本免費(fèi)下載,絕版珍藏 2020-08-30
-
四噴嘴水煤漿氣化爐工業(yè)應(yīng)用情況簡介 2020-08-30
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-08-30
-
甲醇制芳烴研究進(jìn)展 2020-08-30
-
精甲醇及MTO級甲醇精餾工藝技術(shù)進(jìn)展 2020-08-30





