煤種對煤與天然氣共氣化過程的影響
- 期刊名字:過程工程學報
- 文件大?。?/li>
- 論文作者:歐陽朝斌,郭占成,段東平,宋學平,王志
- 作者單位:中國科學院過程工程研究所,中國科學院研究生院
- 更新時間:2020-03-23
- 下載次數(shù):次
第6卷第5期過程工程學報Vol.6 No.52006年10月The Chinese Journal of Process EngineeringOct. 2006煤種對煤與天然氣共氣化過程的影響歐陽朝斌,郭占成', 段東平', 宋學平1,王志(1.中國科學院過程工程研究所,北京10080; 2. 中國科學院研究生院,北京100049)摘要:以移動床為反應器,進行煤與天然氣共氣化熱態(tài)模擬實驗,對無煙煤、瘦煤、肥煤與焦炭進行了對比研究,考察了煤種在不同噴吹參數(shù)H2O/CH/O2時對高溫火焰區(qū)溫度、合成氣有效成分H2+CO和H/CO、以及CH4與水蒸汽轉(zhuǎn)化率的影響.結果表明,相對于焦炭,煤為原料時,高溫火焰區(qū)溫度略高,粗合成氣有效成分H2+CO 體積含量較高,且H2/CO更接近于熱力學平衡值.通過不同煤種的實驗,可以直接制備H/CO在1~2之間可調(diào)、有效成分H2+CO體積含量大于92%、殘留CH小于2%的粗合成氣,CH4 轉(zhuǎn)化率超過90%,水蒸汽轉(zhuǎn)化率高達75%.煤種中高灰分含量有利于煤與天然氣共氣化過程.關鍵詞:煤種;天然氣;共氣化;合成氣中圖分類號: TQ511+.6文獻標識碼: A文章編號: 1009- 606X(2006)05- -0773- -041前言規(guī)模的基礎性研究,探討了各關鍵技術對共氣化工藝的煤與天然氣共氣化工藝是基于天然氣蒸汽轉(zhuǎn)化法影響15-81,在此基礎上以焦炭為原料進行了產(chǎn)氣量10與煤氣化過程而開發(fā)的制備合成氣的新技術1-3),該技m2/h規(guī)模的熱態(tài)模擬實驗研究9.101.以上研究結果都證術以焦炭/煤和天然氣為原料,以移動床豎爐為反應器,明了該技術的可行性及合理性.本工作以不同煤種為原可直接制備H2/CO在1~2之間的合成氣.該技術相對傳料,與以焦炭為原料的熱態(tài)模擬實驗進行對比研究,統(tǒng)天然氣轉(zhuǎn)換法和煤氣化工藝來說有以下特點:節(jié)能探討煤種對該工藝的關鍵技術高溫火焰區(qū)溫度及合成產(chǎn)物中CO2含量低、合成氣中H2/CO在1~2之間可調(diào)氣有效成分H2+CO和H/CO、以及CH4和水蒸汽轉(zhuǎn)化及水蒸汽轉(zhuǎn)化率高.此外,該工藝也可作為- -種潔凈煤率的影響,為該工藝進-步的工程技術研究和應用提供技術,以緩解一定時 期內(nèi)我國以煤為主能源結構帶來的對生態(tài)和環(huán)境的影響,是一種適于 我國資源特點的合成2熱態(tài)模擬實驗氣制備技術.Zhao等"對該技術的原理進行了詳細的探討,并應實驗所用原料為天然氣、工業(yè)純氧、焦炭和煤,焦用計算機對熱力學及動力學進行了模擬計算.以焦炭為炭和煤的粒徑為10~20 mm,天然氣、焦炭和煤的成分原料,以移動床為反應器,進行了產(chǎn)氣量1 m3/h實驗室如表1所示.表1天然氣、煤及焦炭的組成分析結果Table 1 Compositions of natural gas, coke and coalsCH4C2H。C3HpONCO2Natural gasComponent (%, 9)1.670.19Proximate analysis (%, 0)Ultimate analysis (%, 0)VolatileFixed carbon MoistureAshCHCoke3.2184.343.668.7984.840.370.360.431.55Anthracite coal6.2765.400.228.1062.833.001.041.113.69Lean coal15.9469.112.2112.7467.242.730.670.6813.73Fat coal33.74_57.16 .2.496.6175.380.93_0.799.75Note: 1) By difference.熱態(tài)模擬實驗爐采用爐管內(nèi)徑為200 mm、長1700護套管內(nèi),起始位置為O2入口"0(Height表示火焰區(qū)高mm的碳化硅管.用電加熱溫度補償,以維持氣化爐溫度),距中心軸線距離為20 mm.蒸汽預熱爐溫度為300度高溫火焰區(qū)用6支高度相差100 mm的熱電偶進行C,以保證O2攜帶水蒸汽順利供入氣化爐.實驗流程如連續(xù)測溫,每2支安裝在1根外徑為8 mm的Al2O;保圖1所示.收稿日期: 2005- -10- -21,修回日期: 2005-11-10基金項目:國家杰出青年科學基金資助項目(編號: 50225415); 國家高技術研究發(fā)展計劃(863 )基金資助項目(編號: 2002AA529090)作考管個。歐6A日建/1079里湘南省漣源市 人。博十開空生, 化學丁藝去業(yè),部, 上成,通訊聯(lián)玄人Tal 010 69558490 E mi.774過程工程學報第6卷在相同的實驗條件下,考察了CH/O2=1.0 時,不sythests gastL -( TFlowmnter同煤種對高溫火焰區(qū)溫度的影響,結果如圖3所示從E圖可以看出,高溫火焰區(qū)溫度分布隨原料的不同而改TemperatureDemoisturng變,溫度分布從高到低的順序為無煙煤>瘦煤>肥煤>焦MFC炭.因為煤在系統(tǒng)升溫過程中逐漸轉(zhuǎn)變?yōu)榘虢梗浣Y構Oxypen較焦炭疏松,在加熱過程中,焦炭的原子排列會變得越Natural gas來越規(guī)則,碳原子有序排列區(qū)域增大,這種有序化現(xiàn)象會使活性邊緣碳原子對非活性基面內(nèi)的原子數(shù)量比降war-g E低,從而使焦炭反應活性降低"。所以,半焦有利于與Pump Stoam preheaterO2燃燒,導致煤在高溫火焰區(qū)溫度高于焦炭.不同煤種圖1實驗流程示意圖生成的半焦由于存在反應活性的差異,表1中不同煤種Fig. 1 Schematic flow sheet of experimental setup實驗按以下程序進行:首先將煤(約50 kg)或焦炭的灰分含量順序為無煙煤>瘦煤>肥煤.由于灰分中含(約40 kg)裝入氣化爐中,裝料高度為1700 mm,檢測有Si,Ca,Al,Mg,Na等氧化物,有利于提高半焦的反應活性21所以,以焦炭為原料時,高溫火焰區(qū)溫度低于實驗裝置氣密性后進行加熱升溫.加熱爐采用三段控以煤為原料的情況,隨著煤種灰分含量的增加,高溫火溫,上段控制煤氣出口溫度為1000C,中段和下段控焰區(qū)溫度也同時升高.制管外壁溫度為1050C,升溫時間為10 h,在此過程中,煤基本上轉(zhuǎn)化為半焦.當溫度穩(wěn)定1h后,噴入O2、1150天然氣及水蒸汽.粗合成氣出口流量通過濕式流量計測量.每次改變噴吹參數(shù)后,當爐內(nèi)測溫點溫度在13°C波。1100動時,以系統(tǒng)溫度穩(wěn)定考慮并記錄溫度,進行連續(xù)2次1050采樣,用氣相色譜儀SP-3420分析各組分體積含量.-0- Anthracite coal-0- Lean coal3結果與討論-7- Fat coal9503.1煤種對高溫火焰區(qū)溫度的影響高溫火焰區(qū)溫度的控制是該工藝能否順利實施的0 100 200 300 400 50關鍵技術之-一,溫度不宜過高,也不宜過低可.根據(jù)前Flame zone height (mm)期的研究結果!),采用天然氣與O2 平行進料,Vo,=30圖3不同煤種對高溫火焰區(qū)溫度的影響Fig.3 Effect of coal types on the temperature in flame zoneL/min, H20/O2=0. 17(摩爾比,下同), 改變不同煤種時,高溫火焰區(qū)溫度隨CH/O2增大而降低.圖2列舉了以焦3.2煤種對合成氣成分的影響炭為原料時,高溫火焰區(qū)隨CH/O2 的變化曲線,CH4從熱力學平衡原理考慮,對于煤-氧-水蒸汽轉(zhuǎn)化絕裂解吸熱反應是溫度降低的主要原因.熱體系或天然氣-氧-水蒸汽轉(zhuǎn)化絕熱體系,當體系的溫度和壓力一定時,達到平衡所需輸入的原料量和輸出氣1100 ;體組成就是-定值,即平衡自由度為0,因此合成氣成分不可調(diào):而對于煤天然氣-氧-水蒸汽耦合轉(zhuǎn)化絕熱81050體系,當體系的溫度和壓力-定時,平衡自由度為1,即輸入物質(zhì)的量和輸出合成氣的成分可以改變.因此在忌1000CH/O- -0-1.0實際過程中,可以進行多變量的調(diào)控,使合成氣H2/CO在1~2之間.以不同煤種與焦炭為原料,固定H20/02=0.17 及90000 200 300 400 500Vo,=30 L/min,改變CH/O2時,煤種對合成氣有效成分H2+CO體積含量及H2/CO的影響如表2所示.從表可以圖2高溫火焰區(qū)溫度隨CH4/O2的變化曲線看出,在相同的實驗條件下,以煤為原料時,合成氣有Fig.2 Effect of CH/O2 ratio on the temperature in flame zone效成分H2+CO體積含量高于以焦炭為原料,而殘余CH4776過程工程學報第6卷參考文獻:98[1]李俊嶺,溫浩,李靜海,等.以天然氣和煤為原料的合成氣制備96方法及其制備爐[P]. 中國專利: 1418935A, 2003- -05- -21.09一=費==0942]李俊嶺,溫浩,李靜海,等.以煤和天然氣為原料的合成氣制備- -O- Anthracile coal92-0- Lean coal爐[P]. 中國專利: 2513997Y, 2002- 10-02.置90一-- Fat coal[3] Petersen K, Thomas S, Nielsen C, et al. Recent Developments in旨95 F () Sleam coversin rale- o- Anthracite coalAuto-thermal Reforming and Pre-reforming for Synthesis Ga-FatcoalProduction in GTL Applications [0]. Fuel Process. Technol, 2003, 83:85253- -261.8([4] Zhao Y H, Wen H, Guo Z C, et al. Development of a Full-flexible75Co- gasification Technology [J]. Chin. J. Chem. Eng., 2005, 13(1):0.8 1.0 1.2 1.4 1.6 1.8 2.096-101.CH/O2 (%, mol)[5]宋學平,郭占成移動床煤與天然氣共氣化制備合成氣的工藝技術[J]. 化工學報, 2005. 56(2):312- 317.圖4煤種對CH4和水蒸汽轉(zhuǎn)化率的影響[6]宋學平,郭占成.固定床天然氣與煤共氣化火焰區(qū)溫度影響因素Fig.4 Effect of the coal types on the methane and steam的研究J].燃燒化學學報, 2005, 33(I): 53-57.conversion rates[7] 宋學平,郭占成.固定床天然氣與煤聯(lián)合氣化制合成氣反應過程4結論的實驗研究[J]. 過程工程學報,2005,. 5(2): 158-161.[8] Song X P, Guo Z C. A New Process for Synthesis Gas by通過以無煙煤、瘦煤、肥煤與焦炭進行對比實驗表Co-gasifying Coal and Natural Gas [J]. Fuel, 2005, 84: 525 -531.明,以煤為原料,在熱態(tài)模擬實驗中,通過調(diào)控噴吹參[9]歐陽朝斌,段東平,郭占成,等. 天然氣-煤共氣化制備合成氣熱態(tài)模擬[D]. 化工學報,2005, 56( 10): 1436- -1441.數(shù)H2O/CH/O2,在氣化爐爐溫不低于1000C的條件下,[10] Ouyang Z B, Guo Z C, Duan D P, et al. Experimental Study of Coal可以直接制備出H2/CO在1~2之間、有效成分H2+COGasification Coupling with Natural Gas Autothermal Reforming for體積含量大于92%、殘留CH4小于2%的粗合成氣,水Synthesis CGas Production [1]. Ind. Eng. Chem. Res., 2005, 44(2):279- -284.蒸汽轉(zhuǎn)化率超過75%,而CH4轉(zhuǎn)化率高達90%.以煤為[11]張守玉,呂俊復,王文選,等.熱處理對煤焦反應性及微觀結構原料時,由于火焰區(qū)溫度高及半焦反應活性高,與以焦的影響[J]. 燃燒化學學報. 2004. 32(6): 673- -678.炭為原料相比,粗合成氣有效成分更高,且H2/CO更接[12] WuJ H, Fang Y T, Wang Y, el al. Combined Coal Gasification andMethane Reforming for Production of Syngas in Fluidized-bed近于熱力學平衡值.高溫火焰區(qū)溫度可以通過調(diào)節(jié)Reactor [J]. Energy Fuels, 2005, 19: 512-516.CH/O2來控制,合成氣有效成分H2+CO及H/CO主要[13] Huang J J, Fang Y T, Chen H S, et al. Coal Gasification依賴于噴吹參數(shù)H2O/CH/O2.實驗結果還表明,隨著煤Characteristic in a Pressurized Fluidized Bed []. Energy Fuels, 2003,17: 1474-1478.種的灰分含量增加,其高溫火焰區(qū)溫度和生成半焦活性[14] WuJH, Fang Y T, Peng H, et al. A New Integrated Approach of都升高,合成氣有效成分H2+CO及CH4、水蒸汽轉(zhuǎn)化Coal Gasification: The Concept and Preliminary Experimental率提高,從而使H2/CO更接近于熱力學平衡值.Results [D]. Fuel Process. Technol, 2004, 86: 261 -266.Effect of Coal Type on Coal and Natural Gas Co-gasifying ProcessOUYANG Zhao-bin'2, GUO Zhan-cheng',DUAN Dong -ping',SONG Xue ping'",WANG Zhil(I. Inst. Process Eng., CAS, Beijing 100080, China; 2. Graduate University of Chinese Academy of Sciences, Bejjing 100049, China)Abstract: Coal and natural gas co-gasifying process is a new technology to produce synthesis gas based on natural gas steam reformingand coal gasification. A moving bed was used as the reactor in hot simulation experiments. With anthracite, lean and fat coals and cokeas the raw materials, the effect of different coal types on the temperature in the flame zone was studied. The effect of coal type on theingredients of synthesis gas, the methane and steam conversions was investigated in the experiments. With the coals as the raw materials,the results showed that the temperature in the flame zone and the content of active compounds (H2+CO) were higher than those of coke.In addition, the H2/CO ratio of synthesis gas was close to the value calculated by thermodynamic equilibrium. For the crude synthesis gasproduced in this work, the content of active compounds is not less than 92%, the rudimental methane less than 2%, and the H2/CO ratioin the range of 1~2. The steam conversion rate is more than 75%, and the methane conversion rate over 90%. The higher ash content ofcoal is advantageous to the coal and natural gas co-gasifying process. The experimental results have proved that the coal and natural gasco-gasifying process is a new technology to produce synthesis gas suitable to the resource characteristics in China.Key words: coal type; natural gas; co gasifying; synthesis gas
-
C4烯烴制丙烯催化劑 2020-03-23
-
煤基聚乙醇酸技術進展 2020-03-23
-
生物質(zhì)能的應用工程 2020-03-23
-
我國甲醇工業(yè)現(xiàn)狀 2020-03-23
-
JB/T 11699-2013 高處作業(yè)吊籃安裝、拆卸、使用技術規(guī)程 2020-03-23
-
石油化工設備腐蝕與防護參考書十本免費下載,絕版珍藏 2020-03-23
-
四噴嘴水煤漿氣化爐工業(yè)應用情況簡介 2020-03-23
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-03-23
-
甲醇制芳烴研究進展 2020-03-23
-
精甲醇及MTO級甲醇精餾工藝技術進展 2020-03-23




