四氫呋喃-乙醇變壓精餾分離
- 期刊名字:化學(xué)工程
- 文件大?。?/li>
- 論文作者:紀(jì)智玲,王志恒,李文秀,于三三,張志剛,李雙明,范俊剛,張弢
- 作者單位:沈陽化工大學(xué)遼寧省化工分離技術(shù)重點(diǎn)實(shí)驗(yàn)室
- 更新時(shí)間:2020-03-23
- 下載次數(shù):次
第42卷第10期化學(xué)工程Vol 42 No 102014年10月CHEMICAL ENGINEERING( CHINAOct.2014四氫呋喃-乙醇變壓精餾分離紀(jì)智玲,王志恒,李文秀,于三三,張志剛,李雙明,范俊剛,張弢(沈陽化工大學(xué)遼寧省化工分離技術(shù)重點(diǎn)實(shí)驗(yàn)室,遼寧沈陽110142)摘要:共沸混合物分離是化工過程中常見的分離難題。變壓精餾是根據(jù)物系壓力改變而使液體混合物共沸點(diǎn)組成發(fā)生變化,進(jìn)而使共沸物系得以分離的一種有效分離方法。在熱力學(xué)分析基礎(chǔ)上,提出了四氫呋喃-乙醇液體混合物變壓精餾分離雙塔工藝流程。以 NRTL-RK為物性計(jì)算方法,利用 Aspen Plus模擬軟件對(duì)變壓精餾分離工藝過程進(jìn)行分析及模擬,并對(duì)工藝參數(shù)進(jìn)行優(yōu)化。研究結(jié)果表明:在常壓塔和0.8MPa高壓塔組成的雙塔流程中變壓精餾可將四氫呋喃-乙醇最低共沸混合物進(jìn)行較好的分離。關(guān)鍵詞:汽液平衡;共沸物;變壓精餾;模擬中圖分類號(hào):TQ028.3文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):10059954(2014)10002005DOI:10.3969/j.isn.10059954.2014.10.005Pressure-swing distillation separation oftetrahydrofuran-ethanol azeotropeJI Zhi-ling, WANG Zhi-heng, LI Wen-xiu, YU San-san, ZHANG Zhi-gang, LI Shuang- mingFAN Jun-gang, ZHANG TaoKey Lab of Chemical Separation Technology of Liaoning Province, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning Province, ChinaAbstract: Azeotrope separations are tough issues commonly confronted in chemical processes. Pressure-swingdistillation( PSD) is based on the fact that azeotropic composition varies with the operational pressure, by whichazeotrope is then separated effectively. The azeotrope of tetrahydrofuran-ethanol characters that azeotropic pointappears in the vapor-liquid equilibrium, which makes it hard to separate tetrahydrofuran-ethanol liquid mixtureexperimentally and industrially. PSD is expected to fix this kind of separations effectively. In the research a dualcolumn process flow of tetrahydrofuran-ethanol pressure-swing distillation was put forward based on thermodynamicsanalysis. Aspen Plus simulation of pressure-swing distillation process of tetrahydrofuran-ethanol azeotrope wascarried out via NRTL-RK method. The technological parameters were optimized based on the process analysis. Itshows that tetrahydrofuran-ethanol azeotrope can be well separated by means of a two-column pressure-swingdistillation process, which is composed of atmospheric tower and high pressure tower(0. 8 MPa). It is helpful inguiding the process design for separation of tetrahydrofuran-ethanol azeotropeKey words: vapor-liquid equilibria; azeotrope; pressure-swing distillation; simulation四氫呋喃與乙醇是重要的有機(jī)溶劑,廣泛應(yīng)用優(yōu)點(diǎn)712于化工、制藥、染料等領(lǐng)域。工業(yè)生產(chǎn)中產(chǎn)生的四氫應(yīng)用 Aspen Plus模擬軟件,依據(jù)四氫呋喃呋喃和乙醇液體混合物具有最低共沸點(diǎn),采用普通乙醇體系汽液平衡數(shù)據(jù)研究了其變壓精餾分離精餾無法對(duì)其實(shí)現(xiàn)有效分離。具有最低共沸點(diǎn)的難過程特性,并對(duì)過程工藝參數(shù)進(jìn)行優(yōu)化分析,提出分離混合物,可以采用恒沸精餾,萃取精餾,加鹽精個(gè)具有較高分離效率的四氫呋喃-乙醇雙塔變壓精餾等6特殊精餾方法。但與之相比,變壓精餾更餾分離路線。研究結(jié)果將有助于指導(dǎo)該類共沸體系具有工藝簡(jiǎn)單、不引入雜質(zhì)以及節(jié)約能耗等獨(dú)特分離過程的工業(yè)設(shè)計(jì)。收稿日期:201401406作者簡(jiǎn)介:紀(jì)智玲(1962—),女,副教授,主要研究傳質(zhì)過程及新型分離技術(shù),電話:18602419780,E-mal:yizhiling@163.com。紀(jì)智玲等四氫呋喃-乙醇變壓精餾分離1四氫呋喃-乙醇變壓精餾精餾,塔底物流4為所得到的高純度的四氫呋喃產(chǎn)變壓精餾是利用二元混合物系對(duì)拉烏爾定律產(chǎn)品,塔頂共沸物料經(jīng)物料路線2返回到常壓塔DOW生偏差的特點(diǎn),改變體系壓力可以移動(dòng)常壓下形成繼續(xù)精餾。的二元物系共沸點(diǎn)或改變其共沸組成,通過不同操作壓力的精餾過程組合可以在塔頂或者塔底得到高純度組分。1.1四氫呋喃-乙醇物系在不同壓力下汽液相平衡HFEEDH LOW從圖1和表1可以看出,隨著壓力的增加四氫呋喃-乙醇的共沸點(diǎn)沿參考線向左移動(dòng),四氫呋喃在共沸物中的摩爾分?jǐn)?shù)減少。常壓以下,壓力的減小FED原料;3-乙醇;4四氫呋喃;LOW-常壓塔;HGH高壓塔;使四氫呋喃-乙醇的相對(duì)揮發(fā)度增大,但是對(duì)設(shè)備的B1減壓閥;B2-輸送泵氣密性要求增加,為了降低操作成本,選擇使用常壓圖2變壓精餾工藝流程Fig2 PSD Flowchart塔。在加壓條件下,隨著壓力的增加,四氫呋喃-乙醇相對(duì)揮發(fā)度增加,但增加到一定程度時(shí),壓力的增2模擬計(jì)算與優(yōu)化分析加對(duì)相對(duì)揮發(fā)度的影響明顯變小,為了降低設(shè)備的2.1模擬規(guī)定投資費(fèi)用。高壓塔選擇操作壓力為810.6kPa。氣液平衡采用NRTL-RK模型,模擬計(jì)算依據(jù)見表2家0.8表2變壓精餾模擬計(jì)算依據(jù)Table 2 basic facts for PSd simulation0.6( kmol. h-1)醇摩爾分?jǐn)?shù)進(jìn)料溫度分離要求乙參數(shù)名稱進(jìn)料量/進(jìn)料組成乙醇摩爾分?jǐn)?shù)b60,325kPac 100 kP數(shù)值1000.7常溫0.995以上0.2d506.625kPae 810.6kPf 1 000 k Pa2.2模擬過程分析與優(yōu)化液相四氫呋喃摩爾分?jǐn)?shù)對(duì)分離過程工藝而言,產(chǎn)品純度、產(chǎn)量與能耗之圖1壓力對(duì)物系汽液平衡的影響間互相制約。因此需要選擇滿足生產(chǎn)工藝條件下投Fig. 1 Pressure effect on system vapor-liquid equilibrium人較小能耗的操作條件表1壓力對(duì)共沸組成的影響2.2.1常壓塔總塔板數(shù)對(duì)乙醇產(chǎn)品純度(摩爾分Table 1 Effect of pressure on azeotrope composition數(shù))與再沸器熱負(fù)荷Q的影響60.795kPa100kPa506.625kPa810.6kPa1000kPa常壓塔總塔板數(shù)對(duì)塔底乙醇產(chǎn)品純度(摩爾分乙醇摩數(shù))及再沸器熱負(fù)荷Q影響見圖30.0250.09350.6360.902爾分?jǐn)?shù)l.000共沸溫2280度51.0465.35141.97150.830999}嘆2270摩爾分?jǐn)?shù)器熱負(fù)葡22609961.2變壓精餾常規(guī)工藝流程依據(jù)1.1節(jié)的分析可設(shè)計(jì)變壓精餾流程如圖20.9942230所示。在圖2中,循環(huán)高壓共沸組成混合物2引入0.993C.coco2220常壓塔LOW循環(huán)進(jìn)料,塔頂物流1為常壓條件下的1416182022242628303塔板數(shù)共沸物,塔底物流3可以得到高純度的乙醇產(chǎn)品;常圖3總塔板數(shù)的影響壓塔塔頂?shù)墓卜形锛次锪?進(jìn)入高壓塔HGH進(jìn)行Fig 3 Effects of total number of trays化學(xué)工程2014年第42卷第10期由圖3可以看出,乙醇產(chǎn)品純度(摩爾分?jǐn)?shù))隨由圖5可知,隨循環(huán)物流進(jìn)料位置的下移,乙醇著總塔板數(shù)的增加而增大,但塔底乙醇產(chǎn)品純度達(dá)產(chǎn)品純度降低而所需的再沸器熱負(fù)荷増加。到一定程度,其隨塔板數(shù)增加的幅度趨緩,之后保持由圖6可知,原料的進(jìn)料位置過低或過高時(shí),乙定值。同樣隨著塔總板數(shù)的增加,再沸器熱負(fù)荷φε醇產(chǎn)品純度均降低且再沸器熱負(fù)荷增加。降低。綜合考慮,常壓塔理論塔板數(shù)選擇為22塊,可避免塔板數(shù)增加導(dǎo)致的設(shè)備投資費(fèi)用。1.0121802.2.2常壓塔回流比對(duì)乙醇產(chǎn)品純度與能耗Qa216的影響0.98乙醇摩爾分?jǐn)?shù)兩沸器熱負(fù)荷在常壓塔理論塔板數(shù)為22的情況下,研究回流2140≥0.96比對(duì)產(chǎn)品純度及再沸器熱負(fù)荷的影響見圖4。21200.9421000.933000208009121516182022進(jìn)料位置2400圖6主進(jìn)料位置的影響0.98Fig 6 Effects of feed location0.97一乙醇摩爾分再沸器熱負(fù)0.96故常壓塔循環(huán)進(jìn)料最佳進(jìn)料位置在第3塊塔板,主進(jìn)料最佳進(jìn)料位置在第9塊塔板0.20.40.60.81.01回流比R22.2.4常壓塔循環(huán)進(jìn)料量對(duì)乙醇產(chǎn)品純度及再沸圖4回流比的影響器熱負(fù)荷的影響Fig 4 Effects of reflux ratioq/q表示常壓塔塔頂產(chǎn)品摩爾流量與主進(jìn)料摩爾流量之比,它也可反映循環(huán)進(jìn)料量對(duì)常壓塔操圖4可知隨著回流比Rn的增加,塔底乙醇產(chǎn)品作的影響。選用前述適宜的操作參數(shù),研究循環(huán)進(jìn)料量對(duì)產(chǎn)品純度及再沸器熱負(fù)荷的影響。純度(摩爾分?jǐn)?shù))及再沸器熱負(fù)荷Q均顯著增加,但乙醇產(chǎn)品純度達(dá)到一定值后趨于穩(wěn)定,而再沸器熱負(fù)荷卻是線性增大。在滿足分離要求前提下盡可能選擇較小的回流比,故常壓塔選擇回流比為0.6。2.2.3進(jìn)料位置的影響白0.971800選擇常壓塔理論塔板數(shù)為22,回流比為0.6,常乙醇摩爾分?jǐn)?shù)再沸器熱負(fù)荷壓塔循環(huán)進(jìn)料1和主進(jìn)料FEED位置對(duì)產(chǎn)品純度及再沸器熱負(fù)荷Q的影響如圖5和圖6所示。0.91.1.31.51.71.92.1224圖7常壓塔循環(huán)進(jìn)料量的影響Fig 7 Effects of reflux feeding flow rate如圖7所示,隨常壓塔循環(huán)進(jìn)料量增大,即常壓2140塔塔頂采出量增大,乙醇產(chǎn)品純度高顯著增加,但相乙醇摩爾分?jǐn)?shù)應(yīng)再沸器熱負(fù)荷也明顯增大。從圖7中可以得出,再沸器熱負(fù)付0.84合適的循環(huán)進(jìn)料量可取q/qp=1.5。0246810121516182022進(jìn)料位貿(mào)2.2.5高壓塔工藝條件優(yōu)化圖5循環(huán)進(jìn)料位置的影響繼續(xù)運(yùn)用同樣方法對(duì)高壓塔進(jìn)行優(yōu)化分析,優(yōu)Fig 5 Effects of reflux feeding location化工藝條件總結(jié)果如表3所示。紀(jì)智玲等四氫呋喃-乙醇變壓精餾分離表3工藝流程優(yōu)化操作參數(shù)Table 3 Optimization of operating parameters備名稱參數(shù)名稱參數(shù)值總塔板數(shù)四氫呋喃汽相一四氫呋喃液桕循環(huán)物流進(jìn)料位置3乙醇液相勤0.4乙醇汽相常壓塔LOW主進(jìn)料位置回流比操作壓力/kPa1012141618202224總塔板數(shù)24塔板數(shù)進(jìn)料位置高壓塔HGH圖8常壓塔汽液摩爾分?jǐn)?shù)分布回流比Fig. 8 Mole fraction distribution of atmospheric column操作壓力/kPa810.63模擬結(jié)果與討論3.1變壓精餾流程模擬結(jié)果一四氫吠啪汽相采用表3所示優(yōu)化工藝參數(shù),對(duì)圖2所示流程四氫呋喃液相0.5-乙醇汽相進(jìn)行模擬優(yōu)化,模擬結(jié)果如表4所示。乙醇液相0.3表4變壓精餾流程模擬結(jié)果Table 4 pSD simulation results0246810121416182022226流股FEED塔板數(shù)溫度℃2566.566.9478.98149.08圖9高壓塔汽液摩爾分?jǐn)?shù)分布Fig9 Mole fraction distribution of high pressure colun壓力/kPa102.925811.8101.725104.2824.4爾流量/100150120(kmol h")4結(jié)論(1)由汽液相平衡數(shù)據(jù)分析可知,壓力改變可摩爾分?jǐn)?shù)301300670009較大程度上移動(dòng)四氫呋喃,乙醇共沸點(diǎn),使得變壓精餾可以較好地分離四氫呋喃-乙醇二元共沸物系。乙醇摩爾分?jǐn)?shù)0.70.2670.3330.99880.003(2)應(yīng)用 Aspen Plus模擬軟件對(duì)變壓精餾分離四氫呋喃-乙醇共沸物系雙塔工藝流程進(jìn)行研究,得到優(yōu)化工藝操作參數(shù)。在此條件下,通過計(jì)算模擬由表4結(jié)果可知,變壓精留分離后,常壓塔底可該雙塔工藝流程,可得到純度為997%的四氫呋喃得到摩爾分?jǐn)?shù)99.88%的乙醇,高壓塔底可得到與99.5%的乙醇產(chǎn)品;99.7%的四氫呋喃。3.2塔內(nèi)汽液摩爾分?jǐn)?shù)分布(3)本研究提出的四氫呋喃-乙醇變壓精餾流常壓塔LOW和高壓塔HCH塔內(nèi)汽液相摩爾程對(duì)共沸物系分離工藝優(yōu)化分析和對(duì)相應(yīng)現(xiàn)有工藝裝置改造具有重要的指導(dǎo)意義。分?jǐn)?shù)分布分別如圖8和圖9所示。由圖8和圖9可見,常壓塔LOW和加壓塔參考文獻(xiàn)HGH塔頂區(qū)域汽液二相均接近共沸組成;而分別[1 BRUNNER E, SCHOLZ A G R. sobaric vapor-liqui在塔釜區(qū)域,汽液二相摩爾分?jǐn)?shù)均趨近于1,反映該quilibria of the tetrahydrofuran-ethanol system at 25, 50變壓精餾流程可在常壓塔底得到高純乙醇和在高壓and 100 kPa[ J]. J Chem Eng Data, 1984, 29:28-31塔底得到高純四氫呋喃,該結(jié)論與變壓精餾流程模(2] YOSHIKAWA Y, TAKAGI A, KATO M. Indirect determi-擬結(jié)果互為印證,工藝操作條件設(shè)置合理,變壓精餾nation of vapor-liquid equilibria by a small ebulliometer.流程方案可行。Tetrahydrofuran-alcohol binary systems[ J. J Chem Eng24化學(xué)工程2014年第42卷第10期Data,1980,25:344(7):1495-1499[3 YUAN Huajun, AN Yue, XU Guohua, et al. Kinetics of 10] LI Weisong, SHI Lei, YU Baoru, et al. New pressure-swingiquid-phase hydrogenation of toluene catalyzed by hydro-distillation for separating pressure-insensitive maximumgen storage alloy MIN is J]. J Rare Earths, 2004, 22boiling azeotrope via introducing a heavy entrainer: design(3):385-389and control J]. Ind Eng Chem Res, 2013, 524」董營(yíng),肖穎,黃耀東,等.萃取精餾分離碳酸二甲酯-乙7836-7853醇二元共沸物[J.化工進(jìn)展,2013,23(4):750-756[5]劉偉明,程慶來,劉麗波,等.萃取精餾分離四氫呋喃[11 MODLA G, LANG P. Removal and recovery of organicsolvents from aqueous waste mixtures by extractive and乙醇共沸物系[J].天津化工,2009,23(3):19-21pressure swing distillation J]. Ind Eng Chem Res6」楊慧,陳礪,嚴(yán)宗誠(chéng),等.燃料乙醇萃取精餾工藝的有2012,51:11473-11481效能分析[J]華南理工大學(xué)學(xué)報(bào):自然科學(xué)版,201038(8):4043[12]紀(jì)智玲,王志恒,李文秀,等.具有最低共沸點(diǎn)的難分[7 SEADER J D, HENLEY E J. Separation process離物系變壓精餾分離[J].化工進(jìn)展,2014,33(1)193-194les[ m]. 2nd ed. Shanghai: East China Universityence and Technology Pres, 2007: 617-646[13 Aspen Technology Inc. Aspen Plus user guider [MI[8 REPKE J U, KLEIN A D, FORNER F R,et al.PressureNew York: Aspen Technology Co Ltd Press, 2006swing distillation for separation of homogeneous azeotropicmixtures in mass and heat integrated column system; e[14 GMEHLING J, ONKEN U. VAPOR-LIQUID equilibriation performance[ JJ.IEEE, 2004: 3.543-3546um date collection. Chemistry Data Series Vol. L. Part9]趙俊彤,李玲,許春建,等.熱集成變壓精餾分離乙醇1[ M]. Frankfurt: Published by DECHEMA, 1991甲苯體系的過程模擬和優(yōu)化[J].化工進(jìn)展,2013,32135-142【上接第10頁(yè)】Physicochemical and Engineering Aspects, 2003, 2205 ZHU Zhenping, LIU Zhenyu, LIU Shoujin. A novel car-bon-supported vanadium oxide catalyst for NO reduction羅衛(wèi),強(qiáng)敏,唐雪萍,等.兩種納米結(jié)構(gòu)五氧化二釩的with NH, at low temperatures [J]. Applied Catalysis B合成與表征[J].工業(yè)安全與環(huán)保,2013,39(2)Environmental, 1999, 23(4): 223-229.[6KUNDAKOVIC L, STEPHANOPOULOS M F. Reduction [9] MA Jianrong, LIU Zhenyu, HUANG Zhanggen. Ad-characteristics of copper oxide in cerium and zirconiumsorption and oxidation of NH, over V,OS/AC catalystoxide systems[ J]. Applied Catalysis A: General, 1998[J. Chinese Journal of Catalysis, 2006, 27(1):9117(1):1329[7] RANGA R G, RANJAN S E, GOPAL M B. Surface and[10]高家誠(chéng),陳功明,楊紹利含納米V2O3顆粒釩催化劑catalytic properties of Cu-Ce-O composite oxides prepared的制備[J].稀有金屬材料與工程,2004,33(4):by combustion method[J. Colloids and Surfaces A439441歡迎投稿,歡迎訂鬩,歡迎刊登廣告!
-
C4烯烴制丙烯催化劑 2020-03-23
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-03-23
-
生物質(zhì)能的應(yīng)用工程 2020-03-23
-
我國(guó)甲醇工業(yè)現(xiàn)狀 2020-03-23
-
石油化工設(shè)備腐蝕與防護(hù)參考書十本免費(fèi)下載,絕版珍藏 2020-03-23
-
四噴嘴水煤漿氣化爐工業(yè)應(yīng)用情況簡(jiǎn)介 2020-03-23
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-03-23
-
甲醇制芳烴研究進(jìn)展 2020-03-23
-
精甲醇及MTO級(jí)甲醇精餾工藝技術(shù)進(jìn)展 2020-03-23





