關(guān)于測(cè)度的重分形分析
- 期刊名字:華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版)
- 文件大小:327kb
- 論文作者:吳敏
- 作者單位:華南理工大學(xué)數(shù)學(xué)系
- 更新時(shí)間:2020-09-02
- 下載次數(shù):次
華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版)第40卷第10期Journal of South China University of TechnologyVoL, 40 No 102012年10月Natural Science Edition)October 2012文章編號(hào):1000-565X(2012)10-0142-04關(guān)于測(cè)度的重分形分析吳敏(華南理工大學(xué)數(shù)學(xué)系,廣東廣州510640)摘要:測(cè)度的重分形分析是分形幾何的一個(gè)重要研究方向,它廣泛應(yīng)用于動(dòng)力系統(tǒng)、湍流、降雨量模型、地震和金融時(shí)間序列模型.發(fā)展重分形測(cè)度的數(shù)學(xué)理論和方法至關(guān)重要文中簡(jiǎn)要闡述測(cè)度的重分形分析的基本思想和方法,并介紹筆者及其課題組在該領(lǐng)域取得的主要研究成果關(guān)鍵詞:重分形;自相似測(cè)度; Moran測(cè)度;加倍測(cè)度;點(diǎn)態(tài)維數(shù)中圖分類號(hào):029doi:10.3969/ J. Issn.1000565X.2012.10.020測(cè)度的重分形分析是分形幾何的一個(gè)重要研究其中B是長(zhǎng)度為δ的邊平行于坐標(biāo)軸的正方形,它方向分形測(cè)度的概念由 Mandelbrot l在20世紀(jì)70們構(gòu)成平面的一個(gè)分劃,上式右端對(duì)分劃中所有的年代提出,其問(wèn)題的起源可追溯到20世紀(jì)40年代正方形求和由配分函數(shù)定義的熱力學(xué)極限為Kolmogorov2關(guān)于均勻湍流的研究.“重分形測(cè)度”這log Sa(q)名詞由理論物理學(xué)家 Halsey等在1985年引人,t(9)=limg--o log 8該方向發(fā)展非常迅速,并且涉及的領(lǐng)域甚為廣闊它若上述極限存在則配分函數(shù)滿足標(biāo)度律從而知道已被用來(lái)描述動(dòng)力系統(tǒng)的吸引子上的駐留測(cè)度、流體它的增長(zhǎng)性態(tài)函數(shù)x(q)可以反映測(cè)度的整體性質(zhì),中的湍流、雨量分布、宇宙中的質(zhì)量分布神經(jīng)網(wǎng)絡(luò)和通過(guò)它進(jìn)而了解H的分布此外熱力學(xué)極限對(duì)q是否許多共它現(xiàn)象.然而,要將這些實(shí)際問(wèn)題與數(shù)學(xué)及計(jì)可微涉及到系統(tǒng)是否出現(xiàn)相變.但如何確定上述熱力算理論相聯(lián)系是非常困難的因此,發(fā)展重分形測(cè)度學(xué)極限(甚至判別它是否存在)一般說(shuō)來(lái)非常困難的數(shù)學(xué)理論和方法至關(guān)重要,自1990年以來(lái)眾多數(shù)的下述變形有時(shí)在討論中更為方便:設(shè)是學(xué)家做了大量卓有成效的工作,但仍然有許多具重要R上的一個(gè)給定的具有緊支撐的 Borel概率測(cè)度,意義的問(wèn)題有待研究.文中主要介紹筆者及其所在課沒q∈R,記題組在測(cè)度的重分形分析方面獲得的結(jié)果.log(sup∑H(B2(x))r()=r(u, q)=lim infs4ologδ1基本概念其中上確界取遍所有互不相交的半徑為8且中心位為闡述測(cè)度的重分形分析的基本思想和方法,于的支撐上的閉球族B(x)}.r(q)稱為μ的先介紹一些基本概念設(shè)是平面上一個(gè)正測(cè)度,有L”譜,它是一個(gè)單調(diào)上升的凹函數(shù).當(dāng)q>1時(shí),限正測(cè)度也稱為一個(gè)質(zhì)量分布,大家首先關(guān)心的是(q)/(q-1)又稱為H的 Renyi維數(shù)的分布,可以從下面兩個(gè)方面觀測(cè)測(cè)度的分布2維譜1.1L9-譜,熱力學(xué)極限測(cè)度的另一個(gè)重要信息是測(cè)度的局部結(jié)構(gòu),即與μ的質(zhì)量分布密切相關(guān)的是的配分函數(shù)測(cè)度的密度在點(diǎn)x的a-維密度定義為B(x, r))S8(q)=∑H(B),q∈R(2r)4收稿日期:2012-08-01中國(guó)煤化工基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(10571063,11071082)CNMHG作者簡(jiǎn)介:吳敏(1956-),女,教授,博士生導(dǎo)師,主要從事分形幾何研究.E-mail:wumin@seut.edu.cn第10期吳敏:關(guān)于測(cè)度的重分形分析143其中B(x,r)表示以點(diǎn)x為中心、r為半徑的球.在此情形,對(duì)于很小的r,(B(x,))≈r,因此若知道2測(cè)度的重分形分析研究成果在每一點(diǎn)的密度,的分布就清楚了但是,確定測(cè)2.1自相似測(cè)度研究成果度在一點(diǎn)的密度是一個(gè)非常困難的問(wèn)題,除非它像自相似測(cè)度的研究成果主要包括以下幾個(gè)方面正 Lebesgue測(cè)度那樣均勻分布.下面介紹一種目前(1)對(duì)滿足開集條件的自相似測(cè)度, Arbeiter在重分形分析中經(jīng)常遇到同時(shí)也更容易處理的情等證明了其L譜存在并等于其重分形譜.當(dāng)開集形設(shè)n為一個(gè)正整數(shù),是R上的一個(gè)具有緊支條件不滿足時(shí),其L譜的存在性及上、下L譜的估撐的 Borel概率測(cè)度.設(shè)x∈R",記計(jì)都是困難的Oen在q≥1時(shí)給出了不滿足任logu(B,(x))d(u, x)=lim,-0-何分離條件的自相似測(cè)度的上、下L-譜的估計(jì).我們希望知道當(dāng)q<1時(shí)的相應(yīng)結(jié)果事實(shí)上,當(dāng)q<如果上述極限存在,則稱d(,x)為測(cè)度在點(diǎn)x處時(shí),L譜對(duì)測(cè)度μ的微小變化非?!懊舾小?此時(shí)對(duì)的點(diǎn)態(tài)維數(shù)(或局部維數(shù)).如果不存在,則分別用譜的研究更加困難, Olsen的方法已不再適用d(μ,x)、d(μ,x)表示相應(yīng)的上、下極限,并稱它們?yōu)樵谖墨I(xiàn)[9]中,通過(guò)引進(jìn)上覆蓋和上填充 Renyi維數(shù),μ在點(diǎn)x處的上、下點(diǎn)態(tài)維數(shù)點(diǎn)態(tài)維數(shù)的大小反映并建立它們與上、下L譜的關(guān)系,將問(wèn)題轉(zhuǎn)化為較了測(cè)度的局部分布性態(tài).為進(jìn)一步分析測(cè)度的點(diǎn)態(tài)易處理的上覆蓋和上填充 Renyi維數(shù),從而得到q<1維數(shù)的分布規(guī)律,對(duì)于a≥0,定義時(shí)上、下L→譜的非平凡的上、下界估計(jì).作為一個(gè)應(yīng)E(a)=|x∈R";d(u,x)=a用,筆者及其課題組得到任意自相似測(cè)度重分形譜M (a)=dimu(e(a)),的一個(gè)非平凡上界,還討論了一些有趣的例子.稱f(a)為的 Hausdorff維譜.這樣,整個(gè)空間R(2)當(dāng)q>0時(shí),若開集條件滿足, Olsen10得到被分解為R"=Ua0E2(a)由于在E(a)上的任了自相似測(cè)度的L.譜的收斂速率,并證明了其重分點(diǎn)的局部分布性態(tài)相近我們希望知道E(a)的形矩測(cè)度弱收斂到規(guī)范重分形測(cè)度.當(dāng)q<0時(shí),O大小”、變化規(guī)律以及它與μ整體性質(zhì)的聯(lián)系.這sen給出了兩個(gè)猜想確實(shí),當(dāng)q<0時(shí)L譜對(duì)測(cè)度正是測(cè)度的重分形分析的主要研究?jī)?nèi)容之μ的微小變化相當(dāng)敏感,因此對(duì)其的分析一般被認(rèn)1.3 Legendre變換與重分形機(jī)理為相當(dāng)困難,此時(shí) Olsen的處理方法已失效.在文獻(xiàn)有些測(cè)度滿足兩個(gè)冪率,即A(B(x,r)≈r和11中,筆者及其課題組首先證明了自相似測(cè)度是S6(q)=6.這兩個(gè)冪率之間是否存在聯(lián)系?進(jìn)Ahlfors正則的,并以此為基礎(chǔ),得到了當(dāng)q<0且開步,在維譜與熱力學(xué)極限之間是否存在聯(lián)系?物理學(xué)集條件成立時(shí)一大類自相似測(cè)度的L-譜的收斂速率,在文獻(xiàn)[12]中,筆者及其課題組利用文獻(xiàn)[11家 Halsey等在1986年發(fā)現(xiàn)對(duì)于某些測(cè)度,維譜的結(jié)果,證明了q<0時(shí)自相似測(cè)度的重分形矩測(cè)度正好是熱力學(xué)極限的 Legendre變換:弱收斂到規(guī)范重分形測(cè)度,從而對(duì)猜想給出了肯定f (a)=inf-a sakai(q)+aqi而且上述變換的逆變換也成立,亦即建立了熱力學(xué)的回答(3)設(shè)μ是支撐在自相似集K上滿足開集條件極限與維譜的聯(lián)系,同時(shí)建立了統(tǒng)計(jì)物理與分形幾的自相似測(cè)度,對(duì)滿足強(qiáng)分離條件的自相似測(cè)度,何間的聯(lián)系,作為一柄銳利的雙刃劍,重分形分析的 Barreira等證明:發(fā)散點(diǎn)集(即點(diǎn)態(tài)維數(shù)不存在的強(qiáng)大威力也于此得以體現(xiàn)若測(cè)度μ的維譜滿足上點(diǎn)所成之集)與其支撐集的 Hausdorff維數(shù)相等述 Legendre變換,則稱μ滿足重分形機(jī)理.個(gè)自然的問(wèn)題是:在開集條件下,上述結(jié)果是否正什么樣的測(cè)度滿足重分形機(jī)理是重分形分析的確?在文獻(xiàn)[14]中,筆者及其課題組應(yīng)用精細(xì)型的個(gè)最基本的問(wèn)題.目前僅知道自相似測(cè)度、擬Ber盒計(jì)數(shù)原理以及構(gòu)造精細(xì) Moran子集的技巧,證明noii測(cè)度、Gibs測(cè)度等熟知的測(cè)度滿足重分形機(jī)了上述結(jié)果在開集條件下成立進(jìn)一步,對(duì)x∈K,令理,如何有效判斷一個(gè)測(cè)度是否滿足重分形原理還是一個(gè)沒有完全解決的深刻的數(shù)學(xué)問(wèn)題下面主要A(D(x))表示當(dāng)r+0時(shí)函數(shù)D(x)=B(x,)的介紹筆者及其所在課題組在測(cè)度的重分形分析方面聚點(diǎn)集筆老及1(151開住條件下研究了發(fā)獲得的結(jié)果.限于篇幅,有關(guān)自相似測(cè)度、 Moran測(cè)散點(diǎn)集的結(jié)中國(guó)煤化工(x)要么是度、加倍測(cè)度、 Hausdorff和填充維數(shù)等概念及結(jié)果單點(diǎn)集,要CNMH集為閉區(qū)間時(shí)詳見文獻(xiàn)[4-6對(duì)任意閉區(qū)間ICR,筆者及其課題組得到了集合14華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版)第40卷x;A(D(x)=l的 Hausdorff和填充維數(shù),從而解決類非正則的 Moran集,研究了其重分形形式(詳見了 Olsen等提出的一個(gè)猜想,該結(jié)果也推進(jìn)了文獻(xiàn)[24]).為理論和實(shí)際計(jì)算的需要, Brown、FalArbeiter等的一個(gè)經(jīng)典結(jié)果coner、 Hentschel、 Procaccia等引人了勒讓德譜、重分2.2 Moran測(cè)度研究成果形q盒維數(shù)、重分形q-Reni維數(shù)等概念,一般來(lái)講Moran測(cè)度是一類比自相似測(cè)度廣泛得多的分這些譜是彼此不等的,在文獻(xiàn)[25]中筆者及其課題形測(cè)度.這方面的研究成果主要包括以下幾個(gè)方面組給出一個(gè)使上述各種譜相等的充分條件,結(jié)合已(1) Moran測(cè)度的點(diǎn)態(tài)維數(shù)在強(qiáng)分離條件下,知的結(jié)果給出了 Moran測(cè)度各種譜相等且重分形Geronimo等證明了自相似測(cè)度的點(diǎn)態(tài)維數(shù)幾乎公式成立的一個(gè)充分條件處處等于一個(gè)常數(shù) Strichartz i進(jìn)一步將這個(gè)結(jié)果2.3純?cè)蛹颖稖y(cè)度研究成果推廣到滿足開集條件的自相似集 Cawley等研究已知加倍測(cè)度的拓?fù)渲渭浅砻艿?但其測(cè)了一類特殊的 Moran集上支撐的Man測(cè)度,在這度支撐可以有很小的正維數(shù)(該結(jié)論由Ⅲnois大學(xué)類Mran集的構(gòu)造中,逐次迭代采用相同的壓縮映Wu教授證實(shí)).據(jù)此,自然提出以下問(wèn)題:在射(映射個(gè)數(shù)和壓縮比相同).在強(qiáng)分離條件下,他個(gè)維數(shù)很大的底空間上,加倍測(cè)度是否總可以支撐們得到這類 Moran測(cè)度的點(diǎn)態(tài)維數(shù)公式(在幾乎處在一個(gè)稠密的可數(shù)集上,即是否有這樣的空間,其上處的意義下).在文獻(xiàn)[20]中,筆者及其課題組研究所有加倍測(cè)度都是純?cè)?跟這個(gè)問(wèn)題對(duì)偶的一個(gè)了一類更廣泛的 Moran集,在其構(gòu)造中逐次采用不更困難的問(wèn)題是:是否有一個(gè)維數(shù)為0的空間,其上同的壓縮映射個(gè)數(shù)和壓縮比,因此,無(wú)法再將問(wèn)題轉(zhuǎn)所有加倍測(cè)度都不是純?cè)拥?在文獻(xiàn)[27]中,筆化到符號(hào)空間筆者及其課題組利用概率論中的大者及其課題組完全回答了上述兩個(gè)問(wèn)題數(shù)定律和01率研究這類 Moran測(cè)度的點(diǎn)態(tài)維數(shù)設(shè)X是歐氏空間的緊子集,為支撐在X上的得到了下面的結(jié)果:①對(duì)于滿足強(qiáng)分離條件的Mo加倍測(cè)度,記E為X的聚點(diǎn)集,F為X的孤立點(diǎn)集,ran測(cè)度,在壓縮比一致有界的假設(shè)條件下,得到該稱在E上的限制為μ的連續(xù)部分,u在F上的限Moan測(cè)度的上、下點(diǎn)態(tài)維數(shù)公式(在幾乎處處的意制為的原子部分 Kaufman等21提出:是否存在義下);②在強(qiáng)分離條件下,得到齊次Moan集上的R上的緊集X和X上的加倍測(cè)度μ,使得X的孤立Moran測(cè)度的上、下點(diǎn)態(tài)維數(shù)公式(在幾乎處處的意點(diǎn)集在X中稠密,并且μ的連續(xù)部分仍然是加倍測(cè)義下);③在開集條件下,證明了廣義自相似測(cè)度的度?文獻(xiàn)[29]對(duì)這個(gè)問(wèn)題給出了一個(gè)完整的回答,上、下點(diǎn)態(tài)維數(shù)幾乎處處等于常數(shù)同時(shí),給出了這即證明:對(duì)于R中每個(gè)無(wú)孤立點(diǎn)并且無(wú)處稠密的緊類 Moran測(cè)度的維數(shù)公式,并給出了強(qiáng)分離條件下子集E,及E上的任意加倍測(cè)度μ,存在一個(gè)可數(shù)集Moran集的點(diǎn)態(tài)維數(shù)公式進(jìn)一步,在文獻(xiàn)[21]中,F(F∩E=如),以及支撐在E∪F上的加倍測(cè)度用完全不同的方法在開集條件下推廣了文獻(xiàn)[20]v,使得v恰為μ的連續(xù)部分另外,根據(jù)上述結(jié)果,的部分結(jié)果自然提出下列問(wèn)題:是否存在[0,1]上具有止Ieb(2) Moran測(cè)度的重分形機(jī)理筆者及其課題組sgue測(cè)度的緊集,其上的所有加倍測(cè)度都是純?cè)邮紫扔懻摿艘粋€(gè)與 Fibonacci序列有關(guān)的Mmn集的?在文獻(xiàn)[29中,筆者及其課題組證明了R中任及支撐在其上的 Moran i測(cè)度,要特別指出的是,這里意具有正 Lebesgue測(cè)度的緊集上,存在非純?cè)拥牡?Moran分形與已有參考文獻(xiàn)中的 Moran分形是相加倍測(cè)度,對(duì)上面的問(wèn)題給出了一個(gè)否定的回答當(dāng)不同的,已有參考文獻(xiàn)的 Moran集的生成過(guò)程中參考文獻(xiàn)每一階壓縮比的個(gè)數(shù)是相同的,在筆者及其課題組的研究中,每一階的壓縮比及壓縮比的個(gè)數(shù)可以是[1] Mandelbrot bB. The fractal geometry of nature [M]不同的,并且以這種結(jié)構(gòu)為其支撐的測(cè)度既不是New York: W.H. Freeman and Co.. 1982Gibs的也不是自相似的.因此,不能按常規(guī)將問(wèn)題2 Kolmogorov A N. The local structure of turbulence inin轉(zhuǎn)化到符號(hào)空間進(jìn)行處理.筆者及其課題組用與已impressible viscous fluid for very large Reynolds numbers [J]. Comptes Rendus( Doklady) de I'Aacdemie des知結(jié)果完全不同的方法證明其重分形機(jī)理滿足(詳Sciences de P'URSS30. 1941: 301-305見文獻(xiàn)[22]),隨后將該結(jié)果推廣到一大類更一般[3 halse的非齊次的 Moran集(詳見文獻(xiàn)[23]).到目前為止,已知重分形公式成立的情形均為 Taylor意義下CHS中國(guó)煤化工P, et al. fractalcharacterization ofCNMHG1141-1151正則(即dim=Dim),進(jìn)一步,筆者及其課題組對(duì)[4] Falconer K J. Techniques in fractal geometry [ M].Eng第10期吳敏:關(guān)于測(cè)度的重分形分析145land: John Wiley and Sons, Ltd Chichester, 1997.sures [J]. J Lordon Math Soc, 2003, 67: 103-122.[5] Falconer K J. Fractal geometry-mathematical foundations [17] Geronino J S, Hardin D P. An exact formula for theand applications [S 1.]: John Wiley, 1990measure dimensions associated with a class of piecewise[6 Stein E M. Harmonic analysis: real-variable methods, or-linear maps [J]. Constr Approx, 1989, 5: 89-98Timothy S Murphy, Volume 43 of Princeton Mathematical [18] Strichartz R S. Self-similar measures and their Fourierthogonality, and oscillatory integrals, with the assistance oftransforms [J]. Iniana Univ Math J, 1990, 39: 797-817Series, Monographs in Harmonic Analysiscm I [M]. [19] Cawley R, Mauldin R D Multifractal decompositions ofPrinceton: Princeton University Press, 1993Moran fractals [J]. Adv Math, 1992,92: 196-236[7 Arbeiter M, Patzschke N Random self-similar multifrac- [20 Lou Manli, Wu Min The pointwise dimensions of Morantals [J]. Math Nachr, 1996, 181: 5-42measures [J]. Sci China Math, 2010, 53(5): 1283[8 Olsen L. Bounds for the L'-spectra of a self-similar multifractals not satisfying the open set condition [J]. J Math [21] Li Jin-jun, Wu Min Pointwise dimensions of general Mo-Anal Appl,2009,355:12-2lan measures with open set condition [ J]. Sci China[9 Li Jin-jun, Olsen L. Wu min. Bounds for the L-spectra ofMath,201l,54(4):699-710a self-similar multifractals without any separation condi- [22] Wu Min. The singularity spectrum F(a)of some Morantions[J]. J Math Anal Appl, 2012, 387: 77-89fractal [J]. Monatshefte fur mathematik, 2005, 144: 141[10 Olsen L. Empirical multifractal moment measures andmoment scaling functions of self-similar multifractals [23 Wu Min. The multifractal spectrum of some Moran mea-[J. Math Proc Camb Phil Soc, 2002, 33: 459-485sures [J]. Sci China Math, 2005, 48: 1097-111211] Xiao Jia-qing, Wu Min, Olsen L. The exact rate of con- [24] Wu Min, Xiao Jia-qing. The singularity spectrum of someergence of the L'-spectra of self-similar measures fornon-regularity Moran fractals [J]. Chaos Solitons Frac-g<0[J]. J Math Anal Appl,2008,3381):726-741tals,201l,44(7):548-557[12] Xiao Jiaging, Wu Min. Empirical multifractal moment [25] Xiao Jiaqing, Wu Min. The multifractal dimension func-measures of self-similar measures for g <0 [J]. Monatshtions of homogeneous Moran measure J].FractalsMath,2009,156:175-1852008,16(2):175-185[13 Barreira L, Schmeling J Sets of"non-typical"points [26] Wu JM. Hausdorff dimension and doubing measures onhave full topological and full Hausdorff dimensionsmetric spaces [J]. Proc Amer Math Soc, 1998, 126(5)Israel J Math, 2000, 116: 29-701453-1459[14] Xiao Jia-qing, Wu Min. Divergence points of self-similar [27] Lou Manli, Wen Shengyou, Wu Min. Two examples on a-measures satisfying the OSC [J]. J Math Anal Appltomic doubling measures [ J]. J Math Anal Appl, 2007Mo011,379:834-841333:1111-1118[15] Li Jinjun, Wu min, Xiong Yin. Hausdorff dimensions of [28 Kaufman R, Wu J M. Two problems on doubing measuresthe divergence points of self-similar measures with theJ]. Rev Mat Iberoamericana, 1995, 11(3): 527-545open set condition [J]. Nonlinearity, 2012, 25: 93-10529 lou Man-li, Wu Min Doubling measures with doubling[16] Olsen L, Winter S Normal annd non-nocontinuous part [J]. Proc Amer Math Soc, 2010, 138similar sets and divergence points of self-similar mea(10):3585-3589On Multifractal Analysis of MeasuresWu minDepartment of Mathematics, South China University of Technology, Guangzhou 510640, Guangdong, ChinaAbstract: Multifractal analysis of measures is known as an important research direction of fractal geometry. It hasbeen widely used in dynamical systems, turbulence analysis, rainfall modeling, earthquake analysis, and financialtime series modeling. Developing the mathematical theory and methods of multifractal measures is of utmost impor-tance. This paper briefly explains the basic ideas and methods of the multsis of measures and describesthe authors major findings and achievements in this field中國(guó)煤化工Key words: multifractal; self-similar measure; Moran measure; doublerCN MHGnsion責(zé)任編輯:李嘉
-
C4烯烴制丙烯催化劑 2020-09-02
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-09-02
-
生物質(zhì)能的應(yīng)用工程 2020-09-02
-
我國(guó)甲醇工業(yè)現(xiàn)狀 2020-09-02
-
石油化工設(shè)備腐蝕與防護(hù)參考書十本免費(fèi)下載,絕版珍藏 2020-09-02
-
四噴嘴水煤漿氣化爐工業(yè)應(yīng)用情況簡(jiǎn)介 2020-09-02
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-09-02
-
甲醇制芳烴研究進(jìn)展 2020-09-02
-
精甲醇及MTO級(jí)甲醇精餾工藝技術(shù)進(jìn)展 2020-09-02




