我与乡下少妇的性事_色琪琪综合男人的天堂aⅴ视频_大胸喂奶秘书3p高h_国产一区二区视频在线播放_国产老头gay和老头gay视频_中文字幕亚洲欧美_国产男人搡女人免费视频_伊人色综合久久天天五月婷_崔雪莉被金秀贤握胸动态图_毛片在线视频观看

改進(jìn)的群搜索優(yōu)化算法在結(jié)構(gòu)優(yōu)化中的應(yīng)用 改進(jìn)的群搜索優(yōu)化算法在結(jié)構(gòu)優(yōu)化中的應(yīng)用

改進(jìn)的群搜索優(yōu)化算法在結(jié)構(gòu)優(yōu)化中的應(yīng)用

  • 期刊名字:電腦知識(shí)與技術(shù)
  • 文件大?。?64kb
  • 論文作者:張?chǎng)╇?/li>
  • 作者單位:湘南學(xué)院計(jì)算機(jī)科學(xué)系
  • 更新時(shí)間:2020-09-29
  • 下載次數(shù):
論文簡(jiǎn)介

ISSN 1009- -3044E-mail: eduf@dnzs.net.cnComputer Knowledge and Technology電腦知識(shí)與技術(shù)http://www.dnzs.net.cnVol.10, No.13, May 2014Tel:+86- -551-65690963 65690964改進(jìn)的群搜索優(yōu)化算法在結(jié)構(gòu)優(yōu)化中的應(yīng)用張?chǎng)╈F(湘南學(xué)院計(jì)算機(jī)科學(xué)系,湖南郴州423000)摘要:針對(duì)桁架結(jié)構(gòu)優(yōu)化設(shè)計(jì)問(wèn)題,對(duì)群搜索優(yōu)化算法(GSO)進(jìn)行了算法修改和參數(shù)調(diào)整,并將修改后的算法應(yīng)用到10桿、17桿和200桿共3個(gè)桁架結(jié)構(gòu)截面優(yōu)化設(shè)計(jì)算例中,同時(shí)與另一種GSO改進(jìn)算法(IGSO)進(jìn)行了對(duì)比分析。對(duì)于每個(gè)算例,該文改進(jìn)算法和IGSO算法各運(yùn)行了10次,從10次運(yùn)行的統(tǒng)計(jì)結(jié)果可以看出,改進(jìn)算法的優(yōu)化效果和穩(wěn)定性均好于IGSO算法。另外,改進(jìn)算法也與目前結(jié)構(gòu)優(yōu)化中較好的其它幾個(gè)算法進(jìn)行了比較,總體來(lái)說(shuō),改迸算法的最佳優(yōu)化結(jié)果與這些算法的最佳結(jié)果相當(dāng)。關(guān)鍵詞:群集智能;群搜索優(yōu)化算法;結(jié)構(gòu)優(yōu)化;桁架中圖分類(lèi)號(hào):TP301文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào): 1009- 3044(2014)13- 3106- -05Improved Group Search Optimizer Algorithm for Design Optimization of StructuresZHANG Wen-Fen(Department of Computer Science, Xiangnan University, Chenzhou 423000, China)Abstract: An improved Group Search Optimizer algorithm (GSO) is presented for solving structures optimization problems.This paper applied the improved algorithm to 10 -bar, 17- -bar, and 200- bar truss structures optimal design examples and com-pared with another improved GSO algorithm (IGSO). For each example, the improved algorithm herein and IGSO algorithm isexecuted 10 times. The statistics show that the results and stability of the improved algorithm are better than that of IGSO. In ad-dition, the improved algorithm is compared with other good algorithms in structure optimization. It can be seen that the best de -sign of the improved algorithm for each example is as good as that of these algorithms.Key words: swarm intelligence; group search optimizer algorithm; structural optimization; truss建筑結(jié)構(gòu)優(yōu)化設(shè)計(jì)問(wèn)題-直受到設(shè)計(jì)師的高度重視,合理的優(yōu)化設(shè)計(jì)可以節(jié)省原材料,降低工程造價(jià)。桁架結(jié)構(gòu)截面優(yōu)化設(shè)計(jì)的目的是:在桁架拓?fù)浣Y(jié)構(gòu)不變、滿(mǎn)足結(jié)構(gòu)強(qiáng)度和穩(wěn)定性要求的條件下,調(diào)整桁架中每根桿件的橫截面積,使整個(gè)桁架的重量盡量輕。使用智能優(yōu)化算法進(jìn)行桁架結(jié)構(gòu)優(yōu)化是當(dāng)前的一個(gè)研究熱點(diǎn), 文獻(xiàn)[ 1-8]為目前優(yōu)化效果較好的算法。由于約束處理方法不同,其中有的算法完全不允許違反結(jié)構(gòu)強(qiáng)度和穩(wěn)定性要求等約束條件,如文獻(xiàn)[ 1-6],有的算法則允許優(yōu)化結(jié)果稍微違反約束條件,如文獻(xiàn)[7-8]。該文關(guān)注的是完全滿(mǎn)足約束條件的算法。群搜索優(yōu)化(Group Search Optimizer, GSO)算法[9]屬于群集智能算法,文獻(xiàn)[6]提出了一種適用于桁架結(jié)構(gòu)優(yōu)化的GSO改進(jìn)算法(IGSO),并用2個(gè)優(yōu)化設(shè)計(jì)算例證明此算法可用于桁架結(jié)構(gòu)截面優(yōu)化,但其優(yōu)化效果仍有提高的空間。該文在文獻(xiàn)[ 10]的基礎(chǔ)上對(duì)GSO算法進(jìn)行進(jìn)一步改進(jìn) ,為檢驗(yàn)改進(jìn)效果,使用3個(gè)桁架結(jié)構(gòu)優(yōu)化設(shè)計(jì)算例與ICS0算法以及其它優(yōu)秀算法進(jìn)行比較。1改進(jìn)的群搜索優(yōu)化算法GSO算法源于群居動(dòng)物如鳥(niǎo)、魚(yú)、獅子等的覓食行為”。這些動(dòng)物的覓食策略主要有:(1)發(fā)現(xiàn),即發(fā)現(xiàn)食物;(2)加人,即加入(追隨)發(fā)現(xiàn)者共享食物"。此外,GSO算法還會(huì)選擇部分群成員作為游弋者,在搜尋范圍隨機(jī)移動(dòng),以盡量避免陷入局部最小。文獻(xiàn)[10]對(duì)GSO算法進(jìn)行了改進(jìn),提高了搜索性能。該文在文獻(xiàn)[10]的基礎(chǔ)上,修改了加人者的移動(dòng)公式和部分參數(shù),提高了游弋者在群體中的比例,擴(kuò)大了加入者的搜索范圍。以求最小值問(wèn)題為例,改進(jìn)算法可描述如下:設(shè)在一個(gè)d維搜索空間中,第h次迭代之后,群中第i位成員的位置為X;"∈R'。 最初,用上、下邊界之間的隨機(jī)數(shù)作為每個(gè)成員的初始位置。對(duì)于第k次迭代,計(jì)算每位成員的目標(biāo)函數(shù)值,將群成員按目標(biāo)函數(shù)值升序排序,第j位成員記作x-。排在第一的成員x5t1中國(guó)煤化工收稿日期:2014-03-06基金項(xiàng)目:湖南省科技計(jì)劃項(xiàng)目(NO.2011TP4016- -3);湘南學(xué)院“十二五”重點(diǎn)學(xué)科計(jì).MHCNMH G學(xué)院計(jì)算機(jī)應(yīng)用技術(shù)創(chuàng)新訓(xùn)練中心項(xiàng)目[2012]125號(hào)(NO.2)作者簡(jiǎn)介:張?chǎng)╈F(1976-),女,湖南澧縣人,剮教授,碩士,主要研究方向?yàn)橹悄芩惴ā?106*1人工智能及識(shí)別技術(shù)==本欄目責(zé)任編輯:唐-東第10卷第13期(2014年5月)Computer Knowledge and Technology電腦知識(shí)與技術(shù)作為發(fā)現(xiàn)者,在此輪迭代中,發(fā)現(xiàn)者保持原位不動(dòng)。其他成員則按照55%的概率進(jìn)行加入者的選擇,加入者根據(jù)公式(1)來(lái)移動(dòng)位置:x!=X{~+2cr(X5'-X!~ ')+ 2cr(X5;)-x!-)1)其中,c1 .c2為[0, 1]均勻分布隨機(jī)數(shù),ni .rz是[0, 1]均勻分布隨機(jī)向量,n,是2至m之間的隨機(jī)整數(shù), m為位置最好的優(yōu)秀個(gè)體數(shù)。剩下的所有成員都是游弋者,游弋者根據(jù)式(2)進(jìn)行隨機(jī)移動(dòng):X'=x{~+r° basestep." ch angelag2)其中r4為標(biāo)準(zhǔn)正態(tài)分布隨機(jī)向量。basestep是基本移動(dòng)步長(zhǎng)。Changeflag是--個(gè)布爾向量,用于確定哪些維將要改變,用公式(3)生成:ch angeflag =rs < ch angeprobability3)其中,r為d維均勻分布隨機(jī)向量。ch. angprobability = min(1, 1.5/d +(0d/R)為分量變化概率,其值隨迭代次數(shù)遞減。如果changeflag 的所有分量均為0,則重復(fù)公式(3)。本文采用和文獻(xiàn)[6]相同的約束處理方法。對(duì)于取值范圍約束,檢查X$ ,將超出上、下邊界的值退回到邊界。對(duì)于結(jié)構(gòu)穩(wěn)定性約束,只約束發(fā)現(xiàn)者,不允許發(fā)現(xiàn)者移動(dòng)到可行區(qū)域之外,以此確保最終的優(yōu)化結(jié)果完全滿(mǎn)足約束條件,而群中其他成員則可以在自變量取值范圍內(nèi)任意移動(dòng)。最小值優(yōu)化步驟總結(jié)如下: .1)初始化種群規(guī)模、搜索邊界基本步長(zhǎng)和群成員位置矩陣X ;k=1;2)計(jì)算群成員的目標(biāo)函數(shù)值,并將群成員按升序排序,得到群成員索引列表S。3)對(duì)每一個(gè)群成員i≠SQ) ,執(zhí)行步驟(4)至(6);4)生成[0, 1]均勻分布隨機(jī)數(shù)r,如果r小于0.55則i被選為加入者,執(zhí)行公式(1),轉(zhuǎn)第(6)步。5)否則i作為游弋者,按照公式(2)隨機(jī)移動(dòng)。6)對(duì)x;執(zhí)行自變量取值范圍約束檢查,限定其在上、下邊界范圍之內(nèi)。7)如果滿(mǎn)足終止條件則輸出X5、程序結(jié)束,否則k=k+1 ,跳轉(zhuǎn)到(2),進(jìn)入下-輪迭代。2改進(jìn)算法在桁架結(jié)構(gòu)截面優(yōu)化設(shè)計(jì)中的應(yīng)用本文選用3個(gè)經(jīng)典的桁架結(jié)構(gòu)截面優(yōu)化設(shè)計(jì)算例來(lái)檢驗(yàn)改進(jìn)算法的性能。算法參數(shù):種群個(gè)體數(shù)設(shè)為51;basestep取值為0.05*UpperBound-LowerBound);m取值為4;迭代次數(shù)10桿、17桿為3000, 200桿為50000對(duì)于每個(gè)算例,算法均10次。程序使用MATLAB R2012a編寫(xiě),運(yùn)行環(huán)境為W indows 7。2.1桁架結(jié)構(gòu)截面優(yōu)化設(shè)計(jì)算例2.1.1 10桿平面桁架結(jié)構(gòu)截面優(yōu)化設(shè)計(jì)算例圖1為10桿桁架結(jié)構(gòu)圖。其中每根桿件的橫截面積都是一個(gè)自變量。所有桿件材料相同,密度均為0.1lb/in.',彈性模量為10000ksi, 許可應(yīng)力為+25ksi。點(diǎn)1.2.3 .4在兩個(gè)方向上的許可位移為+2.0 in.。所有桿件橫截面積變量的下限均為0.1 in?'。此算例分別對(duì)兩種不同的情形進(jìn)行優(yōu)化。情形1:荷載P, = 100kips, 荷載P2 = 0;情形2:荷載P= 150kips ,荷載Pr = 50kipso360 in.二(1|5360 in. .時(shí)→xP,圖1 10桿桁架 結(jié)構(gòu)2.1.2 17桿平面桁架結(jié)構(gòu)截面優(yōu)化設(shè)計(jì)算例圖2為10桿桁架結(jié)構(gòu)圖。其中每根桿件的橫截面積都是-一個(gè) 自變量。所有桿件材料相同,密度均為0.268 lb/in.' ,彈性模量為30000ksi,許可應(yīng)力為+50ksi。各點(diǎn)在兩個(gè)方向上的許可位移為+2.0 in。所有桿件橫截面積變量的下限均為0.1 in.。在第9結(jié)點(diǎn)垂直向下作用一個(gè)100kips荷載。2.1.3 200桿平面桁架結(jié)構(gòu)截面優(yōu)化設(shè)計(jì)算例中國(guó)煤化工圖2為200桿桁架結(jié)構(gòu)。所有桿件材料相同,密度均為0.283lb/in.’,彈性模量.MHCNMH Gi.各點(diǎn)在兩個(gè)方向上的許可位移為+2.0 in.。所有桿件橫截面積變量的下限均為0.1 in.。200 根桿件萬(wàn)為2少1改比文里,萬(wàn)組1況見(jiàn)表1。此算例考慮三個(gè)工況。工況1:結(jié)點(diǎn)I .6.15.20.29.34.43、48 .57.62和71均作用一個(gè)大小為1.0kips ,指向X軸正向的力;工況2:結(jié)點(diǎn)1、本欄目責(zé)任編輯:唐一東mw人工智能及識(shí)別技術(shù)中3107Computer Knowledge and Technology電腦知識(shí)與技術(shù)第10卷第13期(2014年5月)100in._小_ 100in. 小100in. _小100in._3) 1(4)5(6)9(8513100 in.3) (5)11→o1→X100 kips圖217桿桁架結(jié)構(gòu)2.3.4.5.6.8.10、12.14.15.16.17.18、19.20、22、24..71.72.73.74和75均作用一個(gè)大小為10kips,指向Y軸負(fù)向的力;工況3:工況1和工況2同時(shí)存在。240 in.240in.6 yae 9+12..1415.11.1444.616982041(10224122442014↓202728239/3+3233343536 3715/ /1720[2(22|24)52(26(;29[/30)↓(31)32)↓(3)2 (36(38 _39Y(443/41(45)46)↓48._gy (\51y52),2Y (5457/58)\↓(59)50N(61)(02 170104.d8yY 164 122 166 1726876(69yY178179/ 180181 182/ 183184185/ 188187188 189190 144in.(72)(73)174N (75)19194195 199798\ 1900 360irL→X (76)*7圖3 200桿桁架結(jié)構(gòu)表1 200桿桁架結(jié)構(gòu)的桿件分組組別|桿件編號(hào)組別| 桿件編號(hào)1,2,3,.46| 82,83,85,86,88,89,91,92, 103,104,106,107,109,1 10,112,1135,8,11,14,1717| 1511.11819,20,21,22,23,24:8119,122,125,128,13118.2556,63,94,101,132,139,170,1779133,134,135,136,137,13826.29,32,35,380| 140,143,146,149,152| 6,7,9,10,12,13.,15,16.27,2830,31,33,34,36,?1120,121,123,124,126,127,129,130,141,142,144.145,147,148,150,|3151| 39,40.41,.4222| 153,154.155,156中國(guó)煤化工| 43,46,49,52,553157,160.163166,169MYHCNMH G57,58,59,60,61,6224171,172,173,174,175,1763108由人工智能及識(shí)別技術(shù)本欄目責(zé)任編輯:唐-東第10卷第13期(2014年5 月)Computer Knowledge and Technology電腦知識(shí)與技術(shù)10| 64,67,70,73,7625| 178,181,184,187,190|1 I44.45.47.48.5051.5.54.65.66.68.69,71,72,26158,159,161,162,164.165,167,168,179,180,.182.183,185.186.188,74,751891277,78,79,8027| 191,192,193,19413| 81,84,87,90,9328| 195,197,198,20014| 95,96,97,98.99,10029| 196,199| 15102,105108111,114 .2.2優(yōu)化結(jié)果及比較表2列出了改進(jìn)算法10次優(yōu)化的最佳結(jié)果,這些優(yōu)化結(jié)果都完全滿(mǎn)足約束條件。表3則列出了本文算法與ICSO算法10次運(yùn)行的統(tǒng)計(jì)數(shù)據(jù)。由于10桿優(yōu)化算例包括2種情形,所以實(shí)際上算法對(duì)4種桁架進(jìn)行了優(yōu)化,每種情況分別統(tǒng)計(jì)了10次優(yōu)化的最小值最大值、平均值和標(biāo)準(zhǔn)差.這樣用于比較的統(tǒng)計(jì)數(shù)據(jù)一共有16個(gè)。16個(gè)統(tǒng)計(jì)數(shù)據(jù)中,該文算法除I0桿工況1的最小值略遜于ICSO算法,其它數(shù)據(jù)都優(yōu)于ICSO算法,特別是4種情況下桁架重量的平均值和標(biāo)準(zhǔn)差都小于IGSO算法。此外,表3還列出了4種桁架在文獻(xiàn)[ I- -6]中的最佳優(yōu)化結(jié)果。改進(jìn)算法的優(yōu)化結(jié)果在10桿和200桿時(shí)非常接近文獻(xiàn)[1- 6]中的最佳優(yōu)化結(jié)果,在17桿時(shí)比文獻(xiàn)[1-6]中的最佳優(yōu)化結(jié)果稍好。表2本文算法10次優(yōu)化的最佳結(jié)果設(shè)計(jì)變量?jī)?yōu)化后的截面面積(in.)10桿(1)10桿(2)200桿130.7031123.2282915.909450.1000620.0.11.16722323.2096525.8704512.071090.13217415.1742814.094970.1039550.100028.0742.017360.537171.971455.538390.2751377.4565112.3180111.99790.1478320.9729812.939960.100033.0827921.5036420.305237.963210.1510.100050.10001 .4.102034.059860.457240.140775.650535.462293.989665.545146.49350.565275.575460.4289688.195210.10222209.090320.90693220.223452311.255070.44511 .25中國(guó)煤化工MYHCNMHG275.0014910.21248本欄目責(zé)任編輯:唐- -東aee人工智能及識(shí)別技術(shù)中3109Computer Knowledge and Technology電腦知識(shí)與技術(shù)第10卷第13期(2014年5月)2914.52047重量(ab)5060.9454677.9372581.90925789.49表3 2種GSO改進(jìn)算法10次優(yōu)化結(jié)果統(tǒng)計(jì)|算例算法| 最小值(1b)最大值(b)平均值(b)標(biāo)準(zhǔn)差(b)|文獻(xiàn)[1-6]最 小值(b)| IGSO5060.9[6]| 5064.9[6]5062.1[6]1.384[6]10桿(1) .5060.88[2]|本文算法5060.95| 5062.105061.30| 0.35IGSO4678.8.|4701.4685.35| 6.18110桿(2)4677.06[4]本文算法4677.944684.794680.442.4025822582.82582.2| 0.26217桿2581.94[1]2581.91| 2582.032581.970.04| 2887627345768.029200桿25657.38[5]本文算法.| 27316.9326369.14493.283結(jié)束語(yǔ)本文針對(duì)桁架結(jié)構(gòu)優(yōu)化問(wèn)題,在其它GSO改進(jìn)算法的基礎(chǔ)上,修改了GSO算法的部分公式和參數(shù)。并將改進(jìn)算法應(yīng)用于多個(gè)桁架結(jié)構(gòu)設(shè)計(jì)算例,從優(yōu)化設(shè)計(jì)結(jié)果的統(tǒng)計(jì)數(shù)據(jù)可知,該文算法比ICSO算法具有更好的優(yōu)化效果和穩(wěn)定性.最佳優(yōu)化結(jié)果與目前較好的算法相當(dāng),可用于桁架結(jié)構(gòu)截面優(yōu)化設(shè)計(jì)。參考文獻(xiàn):[1]LJ. Li, Z.B. Huang, F. Liu & Q.H. Wu, A heuristic particle swarm optimizer for optimization of pin connected strutures[J].Comput-ers and Structures,2007,85(7-8):340-349.2] Mustafa Sonmez.Artificial Bee Colony algorithm for optimization of truss structures[J].Applied Soft Computing, 2011.11(2) '2406- -2418.[3] O. Hasancebi,S. Kazemzadeh Azad, S.Kazemzadeh Azad.Automated sizing of truss structures using a computationally improved SOPTalgrithm[J.Intermational journal of optimization in civil engineering, 2013, 3():209 -221.[4] Ali Hadidj,Sina Kazemzadeh Azad,Saeid Kazemzadeh Azad.Structural optimization using artificial bee colony algorithm[C].2nd Interma-tional conference on engineering optimization,September 2010.[5]張?chǎng)╈F李麗娟,滕少華,等粒子群優(yōu)化算法在桁架結(jié)構(gòu)優(yōu)化中的應(yīng)用].計(jì)算機(jī)技術(shù)與發(fā)展,2010.20(5):223-226.[6]張?chǎng)╈F,陸武魁,羅玉玲群搜索優(yōu)化算法在桁架結(jié)構(gòu)優(yōu)化中的應(yīng)用].現(xiàn)代計(jì)算機(jī),2009,321:17-20.[7] LAMBERTI L.An eficient simulated annealing algorithm for design optimization of truss strutures[]. Computers and Strue-tures. 2008.86:1936- 1953.[8] S. Gholizadeh, FFattahi, Serial integration of particle swarm and ant colony algorithms for structural of optimiztion[J].Asian journalof eivil engineering,2012,13(1);127- 146. .[9]S. He, Q. H. Wu, A Novel Group Search Optimizer Inspired by Animal Behavioural[(C].2006 IEEE Congress on Evolutionary Computa-tion,2006:4415-4421.[10]張?chǎng)╈F高守平.改進(jìn)共享策略的簡(jiǎn)單群搜索優(yōu)化算法[I].計(jì)算機(jī)工程與科學(xué)201.33(7):193- 196.(.上接第3074頁(yè))于DSP的檢測(cè)算法實(shí)現(xiàn)及優(yōu)化,其中優(yōu)化是重點(diǎn),需要同時(shí)考慮DSP的緩存結(jié)構(gòu)特性、硬件并行處理及軟件流水線化等。該文的優(yōu)化運(yùn)行結(jié)果是用PRD函數(shù)進(jìn)行估算的,具體結(jié)果表明經(jīng)過(guò)優(yōu)化提高了程序的執(zhí)行速度,系統(tǒng)性能明顯改善。[1]徐向輝紅外圖像目標(biāo)檢測(cè)與跟蹤研究[D].北京:北京理工大學(xué),2001.[2]李宏貴,李興國(guó)基于分形特征的紅外圖像識(shí)別方法[D.紅外與激光工程199,28(1).[3]姜錦鋒.紅外圖像的目標(biāo)檢測(cè)、識(shí)別與跟蹤技術(shù)研究[D1.西北工業(yè)大學(xué)2004.[4]何斌,馬天予,王運(yùn)堅(jiān)數(shù)字圖像處理[M].北京北京人民郵電出版社,2002.中國(guó)煤化工[5]柯麗,黃廉卿.DSP芯片在實(shí)時(shí)圖像處理系統(tǒng)中的應(yīng)用].光機(jī)電信息,2005(1).[6]彭啟棕,管慶.DSP集成開(kāi)發(fā)環(huán)境[M].北京電子工業(yè)出版社,2004.MYHCNMH G[7]趙訓(xùn)威.TMS320C6200系列DSPS芯片應(yīng)用與開(kāi)發(fā)[M].北京:北京人民郵電出版社2002.[8] TMS320C621x/C671x DSP Two-Level Intemal Memory Reference Guide ,Copyright, Texas Instruments Inorporated,2004.3110人工智能及識(shí)別技術(shù)本欄目責(zé)任編輯:唐-東

論文截圖
版權(quán):如無(wú)特殊注明,文章轉(zhuǎn)載自網(wǎng)絡(luò),侵權(quán)請(qǐng)聯(lián)系cnmhg168#163.com刪除!文件均為網(wǎng)友上傳,僅供研究和學(xué)習(xí)使用,務(wù)必24小時(shí)內(nèi)刪除。