新疆托里油砂分段熱解機(jī)理
- 期刊名字:化工學(xué)報(bào)
- 文件大小:
- 論文作者:白翔,馬鳳云,劉景梅,鐘梅
- 作者單位:新疆大學(xué)化學(xué)化工學(xué)院
- 更新時(shí)間:2020-03-24
- 下載次數(shù):次
第66卷第1期化工學(xué)報(bào)Vol. 66 No 11015年H1月CIESC JournalNovember 2015研究論文新疆托里油砂分段熱解機(jī)理白翔,馬鳳云,劉景梅,鐘梅(新疆大學(xué)化學(xué)化工學(xué)院,新疆烏魯木齊830046)摘要:在熱重分析儀中考察了不同升溫速率下油砂的熱解特性,結(jié)果表明:油砂樣品失重過(guò)程分為少量氣體脫附、低溫?zé)峤?、主要熱解、半焦縮聚4個(gè)階段。通過(guò)微型固定床與在線質(zhì)譜耦合測(cè)得的氣體釋放順序?yàn)镃O2、CO、C2H6、CH4和H2,所對(duì)應(yīng)的初釋溫度分別為155、178、146、174、354℃。結(jié)合核磁和紅外對(duì)不同溫度段液固產(chǎn)物的化學(xué)結(jié)構(gòu)進(jìn)行分析,發(fā)現(xiàn)350℃前主要是油砂中輕質(zhì)油脫附,還包括羧基和烷基側(cè)鏈的斷裂,輕質(zhì)油品中芳碳率達(dá)792%;350~520℃之間為油砂的主要熱解階段,油砂油結(jié)構(gòu)中芳碳率為23.51%。據(jù) Coats- Redfern法計(jì)算得到油砂低溫?zé)峤夂椭饕獰峤舛蔚幕罨芊謩e為27.63和90.30kJ·mol,說(shuō)明開(kāi)環(huán)與裂解反應(yīng)所需活化能大于油砂油脫附、羧基分解和弱鍵斷裂反應(yīng)的活化能,揭示了分段熱解機(jī)理關(guān)鍵詞:油砂;熱重分析:氣體逸出順序;核磁和紅外分析:熱解機(jī)理DOl:10.11949/1s.0438-1157.20150493中圖分類號(hào):TK16文獻(xiàn)標(biāo)志碼:A文章編號(hào):0438-1157(2015)11-4626-Segmenting pyrolysis mechanism of Tuoli oil sand in XinjiangBAI Xiang, MA Fengyun, LIU Jingmei, ZHONG Mei(College of Chemical and Engineering, Xinjiang University, Urumqi 830046, Xinjiang, China)Abstract: The pyrolysis characteristics of oil sand at different heating rate was investigated by using alermogravimetric analyzer. The results showed that the mass loss of oil sand sample contained four processesdesorption, low temperature pyrolysis, main pyrolysis and char condensation. The evolution order of CO2, COC2H6, CHA and H2 was determined via the micro fixed bed reactor coupled with mass spectra analyzer, and thecorresponding initial releasing temperature were 155, 178, 146, 174 and 354C, respectively. The composition andchemical structure parameters of liquid and solid products in different temperature ranges were studied by NMrspectroscopy and IR spectrometry. The results showed that the principle reaction before 350C was desorption oflight oil, in which the aromatic carbon ratio amounted to 7.92% including the breaking of carboxylic and alkyide chains. The oil sand pyrolysis process mainly occurred in the temperature range of 350--520C. The aromaticcarbon ratio of the obtained pyrolysis oil was 23. 51%. By using Coats-Redfern method, the correspondingactivation energy of low temperature pyrolysis and main pyrolysis process were 27.63 and 90.30 kJ. moldesorption of oil sand, decomposition of carboxyl and breaking of the weak bold eaction was higher than that ofrespectively, indicating that the activation energy of ring-opening and cracking reKey words: oil sand; pyrolysis; gas evolution order; NMR and IR analysis; pyrolysis mechanism2015-04-17收到初稿,2015-08-10收到修改稿。Received date: 2015-04-17聯(lián)系人:鐘梅。第一作者:白翔(1988-),男,碩士研究生。Corresponding author: Prof ZHONG Mei, zhongmei0504@126基金項(xiàng)目:新疆維吾爾自治區(qū)高校科研基金項(xiàng)目( XJEDU20141003)。supported by the University Scientific ResearchFoundation of Xinjiang Uygur Autonomous Region(XJEDU20141003)第11期白翔等:新疆托里油砂分段熱解機(jī)理4627能,驗(yàn)證了油砂熱解斷鍵的難易程度,從而為油砂低溫?zé)峤饧夹g(shù)提供基礎(chǔ)參數(shù)。中國(guó)能源結(jié)構(gòu)為“富煤、貧油、少氣”,2014年原油對(duì)外依存度已達(dá)596%故此,國(guó)家對(duì)非常規(guī)油1實(shí)驗(yàn)部分氣資源的開(kāi)發(fā)愈來(lái)愈重視。油砂因其儲(chǔ)量豐富、分布11樣品集中等特點(diǎn)成為石油資源的有益補(bǔ)充。油砂資源的油砂樣取自中國(guó)新疆托里二區(qū)油砂礦,其工業(yè)分開(kāi)發(fā)利用,將對(duì)中國(guó)能源戰(zhàn)略安全起到積極的作用油砂的提油工藝包括水熱洗法、溶劑萃取法B4析和元素分析分別采用國(guó)標(biāo)GBT212-2001和元素和低溫?zé)峤夥é娄堑?。與前兩種方法相比,低溫?zé)峤夥治鰞x測(cè)定( Thermo Flash EA-12, Thermo Finnigan水、節(jié)能和減排 Corporation),結(jié)果如表1所示。油砂樣品中有機(jī)質(zhì)等特點(diǎn)。王擎等考察了不同干餾終溫下印尼油砂熱含量(干基)為9.14%(質(zhì)量)。其中,干燥無(wú)灰基解產(chǎn)物,在150℃氣體產(chǎn)率達(dá)0.52%,通過(guò)核磁分析固定碳含量?jī)H為21.22%(質(zhì)量)。該樣品中HC高了油砂熱解油,發(fā)現(xiàn)隨溫度的升高,芳碳率變化較小,達(dá)1.99,說(shuō)明熱解產(chǎn)物中油產(chǎn)率較高。實(shí)驗(yàn)所用的芳碳和環(huán)烷碳含量減少。孫楠等研究了扎賚特旗油油砂樣磨至粒徑≤74μm,在105℃下干燥2h除去砂,當(dāng)反應(yīng)溫度高于540℃時(shí),油砂二次裂解反應(yīng)加水分,密封干燥保存待用。劇,縮合成焦炭,裂解成小分子。Mng等對(duì)圖牧12實(shí)驗(yàn)儀器與方法吉油砂熱解特性及熱解干餾提油法進(jìn)行了系統(tǒng)研究,實(shí)驗(yàn)采用的主要儀器有SDTQ600熱重分析儀發(fā)現(xiàn)350~550℃范圍內(nèi)油砂的失重量最大,520℃時(shí)(美國(guó)TA公司)、LCDl00m在線質(zhì)譜(美國(guó)油砂熱解液體產(chǎn)率達(dá)到最大為80.4%(mass,daf)。AMETEK公司)、GC-4000A氣相色譜(東西電子研究表明,在較低溫度下聚合物之間的CH-CH2、有限公司)、 arian inova-400導(dǎo)核磁共振譜儀(美H-O、一0-、一S-等橋鍵,受熱易裂解生成自國(guó)aian公司)、 EQUINOX5傅里葉變換紅外光由基“碎片”脂肪側(cè)鏈裂解生成CH4、C2H和C2H4譜儀(德國(guó) Bruker)等氣態(tài)烴。Ma等開(kāi)展了印尼布頓島油砂的熱油砂的程序升溫?zé)峤鈱?shí)驗(yàn)在熱重分析儀上進(jìn)解動(dòng)力學(xué)研究,從350℃升至50℃時(shí)油砂熱解轉(zhuǎn)化行。操作過(guò)程如下:取樣品(65±03)mg置于氧率達(dá)到9s%,相應(yīng)的活化能從13kJ·mo增至85化鋁坩堝內(nèi),高純氮999%(體積)]作為載氣,kJ·mo1 Al-Otoom等用熱重分析儀考察了升溫氣體流速20 mI . min,先吹掃30min,排盡空氣,速率對(duì)約旦油砂熱解性能的影響,當(dāng)升溫速率由隨后以一定的升溫速率(5、10、20、40、60、70、1℃·min1升至50℃·mim1時(shí),相應(yīng)的活化能由80、10℃·mim)升至105℃并保持20mim,繼32.12kJ·mol增至42.93kJ·mol。續(xù)升溫至600℃并保持60min。綜上所述,研究者們大多針對(duì)油砂熱解氣體和熱解實(shí)驗(yàn)在微型固定床反應(yīng)裝置中進(jìn)行反應(yīng)焦油進(jìn)行分析,而對(duì)各個(gè)不同溫度段油砂熱解剩余(圖1)。實(shí)驗(yàn)升溫速率為10℃·min',以高純N2殘?jiān)淖兓皻怏w的釋出規(guī)律卻未做出相應(yīng)描述。為載氣,油砂熱解產(chǎn)物測(cè)定分兩步進(jìn)行:①由室溫本實(shí)驗(yàn)采用熱重分析儀研究油砂的失重特征,通過(guò)升至350℃并保持30min后,在N2氣氛下冷卻至微型固定床與在線質(zhì)譜耦合,揭示了相應(yīng)溫度段各室溫;②繼上述步驟再?gòu)氖覝厣?20℃并保持30氣體的釋放特征,通過(guò)核磁和紅外對(duì)樣品及其液相min。分別收集各段氣液產(chǎn)物,主要?dú)怏w組分H2、產(chǎn)物和殘?jiān)M(jìn)行了分析,得出油砂熱解過(guò)程中液固CO、CH4、CO2和C2H6的逸出規(guī)律由在線質(zhì)譜分析。產(chǎn)物變化規(guī)律,推測(cè)熱解過(guò)程中不同溫度段熱解機(jī)檢測(cè)各氣體體積分?jǐn)?shù),計(jì)算氣體產(chǎn)率。液體產(chǎn)物經(jīng)理。根據(jù) Coats- Redfern法計(jì)算了各溫度段的活化深度冷凝后用脫脂棉擦拭,由差重法計(jì)算其產(chǎn)率。表1油砂樣品的工業(yè)分析和元素分析Table 1 Proximate and ultimate analysis of oil sand sampleProximate analysis/%Ultimate analysis/%MadCdafHdafL.3177.736.514628·化工學(xué)報(bào)第66卷10距n{4),計(jì)算E和A尸E2結(jié)果與討論21油砂的TG程序升溫?zé)峤膺^(guò)程分析圖2為不同升溫速率下油砂的TG與DTG曲圖1固定床耦合在線質(zhì)譜流程線。圖2(a)曲線A~H的升溫速率分別為5、10、Fig! Schematic diagram of micro fixed bed reactor coupled20、40、60、70、80、100℃·minl。由圖2可知,with online mass spectrometry油砂熱解過(guò)程可分為4個(gè)階段,以10℃·min的I-argon; 2mass flow meter; 3--thermocouple: 4-clectric furnace升溫速率為例:第1段為干燥脫氣段,溫度范圍為5--fixed bed6 cooling units;: gas washing bottle;8 gas flow meter;30~120℃,該階段失重量約占總失重量的1,98%,g-U type dry pipe: 10 online mass spectrometry; 1l-air trap可能是油砂樣中微量水分和吸附氣體的脫除;第2將不同溫度段液體產(chǎn)物進(jìn)行油水分離,油樣的測(cè)試段溫度區(qū)間為120~350℃,是油砂的低溫?zé)峤舛稳吭诤舜殴舱褡V儀上進(jìn)行,溶劑為CDCl3。樣品其失重量占總失重量的3843%,主要是油砂中輕質(zhì)和不同溫度段殘?jiān)捎肍TIR進(jìn)行分析。油的脫附,還包括羧基分解生成CO2、吸附氣體脫13動(dòng)力學(xué)分析方法附及弱鍵斷裂;第3段為350~520℃,是油砂的主油砂熱解速率y如式(1)所示要熱解階段,有機(jī)質(zhì)發(fā)生強(qiáng)烈熱解反應(yīng):①有機(jī)dx質(zhì)→重油+殘?zhí)?氣;②重油→輕油+殘?zhí)?氣,其失-=kf(x)重量為總失重量的5453%;第4段是520~600℃C其中,模型函數(shù)f(x)可由式(2)描述為半焦縮聚段,該階段TG曲線變得平緩,其失重f(x)=(1-x)由 Arrhenius方程的可得Ek= dc將式(2)和式(3)代入式(1)中求得E式(1)~式(3)中,x為t時(shí)刻的總熱解轉(zhuǎn)化temperature/℃率;m為樣品初始質(zhì)量;m是t時(shí)刻樣品的質(zhì)量m為熱解終溫時(shí)的樣品質(zhì)量:k為溫度T下的反應(yīng)速率常數(shù);n為熱解反應(yīng)級(jí)數(shù),通常認(rèn)為油砂熱解n=1:A為指前因子;E為活化能:;R為普適氣體常數(shù)。對(duì)于非等溫?zé)峤膺^(guò)程,引入升溫速率B=dT/d,整理后得到 Coats-Redfern方程19當(dāng)n=1時(shí)-In(1-x)aRTRTtemperature,/℃式中27約為0.1,故此1-2R7可認(rèn)為是1,圖2不同升溫速率時(shí)油砂的失重率與失重速率曲線EEFig2 TG and dtG curves of oil sand at different以lnn(1對(duì)作圖,通過(guò)直線斜率-上和截A,B.C,D,E,FGH-5,10,20,40,60,70,80,100℃·min第11期白翔等:新疆托里油砂分段熱解機(jī)理4629表2氣體釋放的特征溫度Table 2 Gas release characteristic temperaturePeak I(25-120℃)Peak2(120350℃)Peak3(350-520℃)Peak4(520600℃)T174312H423量占總失重量的505%。當(dāng)升溫速率由5℃·min1增至100℃·min0105010cHC出Hy時(shí),油砂的失重曲線向高溫方向移動(dòng)圖2(a),n cO從350℃升至520℃時(shí),熱解特征溫度T(Tp為失CH6重速率最大時(shí)對(duì)應(yīng)的溫度)由433升至489C圖oaCH2(b)]。升溫速率對(duì)熱解反應(yīng)的影響可從兩方面闡述:①升溫速率增加,樣品顆粒表面快速達(dá)到熱解所需溫度優(yōu)先發(fā)生熱解;②產(chǎn)生傳熱滯后效應(yīng),導(dǎo)致顆粒內(nèi)外溫差變大,當(dāng)內(nèi)部顆粒開(kāi)始熱解時(shí),表1000200030004000500060007000面顆粒的溫度繼續(xù)上升,故與低升溫速率相比,Tp向高溫方向移動(dòng)。圖3油砂熱解氣體的釋放規(guī)律油砂熱解主要?dú)庀喈a(chǎn)物釋放規(guī)律Fig3 Evolution characteristics of major volatile gases為解析熱重圖中各階段揮發(fā)分的析出特性,在0.0720×10微型固定床反應(yīng)器中采用10℃·min的升溫速率001004Cc CO2升至終溫600℃,考察溫度對(duì)氣體析出規(guī)律的影響0.0500020003000(圖3)。由圖可知,各氣體的逸出曲線出現(xiàn)了峰的C,Ho疊加。為揭示圖3中氣體在不同溫度段的逸出特性,于120、350和520℃分別保持20、30和30min(圖4)。由圖可知,C2H6和CH4氣體在25520℃溫度001范圍內(nèi)均有釋出,其中在25~120℃溫度區(qū)間為少AaA量C2H6和CH4氣體的脫附;120~350℃溫度段內(nèi)二者的逸出溫度和峰溫分別約為146、174℃和177、312℃(表2),可歸屬于油砂樣品的低溫?zé)峤夂臀鼒D4不同溫度段油砂熱解氣體的釋放規(guī)律附氣體的高溫脫附;在350~520℃溫度范圍,兩種4 Gas release law at different temperature ranges氣體的逸出峰溫分別為425和438℃(表2);在CO2釋出峰,可歸屬為碳酸鹽的分解,與賈春霞1520~600℃溫度區(qū)間,幾乎沒(méi)有C2H生成,說(shuō)明其的結(jié)論一致。CO的析出曲線較為平緩,無(wú)明顯峰在主要熱解段已釋放完全,CH4的峰溫為573℃,值,說(shuō)明該油砂樣有機(jī)質(zhì)中羰基和醚鍵官能團(tuán)數(shù)量可能是由重油的二次裂解與長(zhǎng)碳鏈的氣態(tài)烴裂解產(chǎn)較少。生。H2的初釋溫度高于其他氣體,約為354℃,其表3為油砂熱解產(chǎn)物的分布情況。由表可知,釋出曲線有兩個(gè)逸出峰,峰溫分別為423和585℃,在50~350℃溫度區(qū)間,CO2產(chǎn)率達(dá)0.41%,約占該在520~600℃溫度段內(nèi)H2主要來(lái)源于芳香結(jié)構(gòu)的溫度段氣體總產(chǎn)率的96.78%,說(shuō)明溫度低于350℃縮聚。CO2于15℃左右開(kāi)始釋出,在120~520℃時(shí),主要發(fā)生羧基分解反應(yīng),少量的CH4和C2H6溫度區(qū)間有兩個(gè)明顯的逸出峰,峰溫分別為321為油砂中吸附氣體的脫附及輕烴類物質(zhì)的斷鍵。此和408℃,在520~600℃區(qū)間仍有一個(gè)較弱的溫度范圍內(nèi)CO2的產(chǎn)率占其總產(chǎn)率的6212%,意味4630第66卷表3油砂熱解產(chǎn)物分布10Table 3 Results of oil sand pyrolysis products distribution08(c)520℃CHe0.0001208(b)350℃著低熱穩(wěn)定性的羧基含量高于高熱穩(wěn)定性的羧基含量。在350~520℃溫度區(qū)間,CO2、CH4、C2H6、o8(a)H2產(chǎn)率分別為0.25%、0.32%、0.056%和0.8%。結(jié)合圖4可知,H2、CH4和C2H6的生成曲線峰面積較大,說(shuō)明上述3種氣體在該溫度段內(nèi)集中釋放。002000H2的生成源于該油砂樣中芳香族結(jié)構(gòu)縮聚脫氫wavenumber/cm-lCH4和C2H6主要由連有烷烴側(cè)鏈的CH3和C2H圖5油砂與反應(yīng)后樣品FTR分析官能團(tuán)直接裂解及含亞甲基的脂鏈或脂環(huán)斷裂ig. 5 FT-IR spectra of oil sand and products after pyrolysis產(chǎn)生。at different temperature從表3可以看出,在50~350℃與350~520℃結(jié)論相吻合,即350℃之前羧基和部分弱鍵斷裂,溫度區(qū)間,油砂熱解氣產(chǎn)率與液體產(chǎn)率之和分別為同時(shí)油砂油發(fā)生高溫脫附反應(yīng)。一OH的振動(dòng)峰無(wú)4.28%和6,10%,采用熱重分析儀測(cè)得數(shù)據(jù)分別為明顯變化,這源于熱穩(wěn)定性O(shè)H>C=O>-COOH441%和6.18%(圖2),二者測(cè)量值相符程度達(dá)>-OCH3。圖5(c)與圖5(b)相比較可得,在96.94%和9871%,說(shuō)明實(shí)驗(yàn)數(shù)據(jù)可靠520℃殘?jiān)鼧悠分幸籓H、脂肪區(qū)、較弱烯烴-CH2、23油砂及殘?jiān)募t外分析芳環(huán)CH的振動(dòng)峰幾乎完全消失,說(shuō)明當(dāng)溫度從油砂及殘焦的紅外光譜分析如圖5所示。圖5350℃升至520℃時(shí),油砂有機(jī)質(zhì)中大部分官能團(tuán)發(fā)(a)油砂樣品具有復(fù)雜的吸收峰,其中3695cm生斷裂,重新組合生成新的化合物。圖5(d)為的峰形較尖銳,由—OH伸縮振動(dòng)引起,醇羥基、600℃時(shí)油砂殘?jiān)募t外圖譜,與圖5(c)相比較酚羥基等寬化了-OH的吸收帶出現(xiàn)在3620cm沒(méi)有明顯差別,進(jìn)一步證明羰基、活性的醚鍵和連3020~2790cm-處的峰為油砂中脂肪類物質(zhì)的吸接在脂鏈或脂環(huán)烷烴側(cè)鏈的CH3官能團(tuán)在520℃收振動(dòng)峰,2925和2856cm的峰分別歸屬為脂肪之前完全斷裂。族_(H3的反對(duì)稱和對(duì)稱伸縮振動(dòng)峰。醛羰基C=O2.4油砂兩段熱解液相產(chǎn)物核磁分析伸縮振動(dòng)發(fā)生在1730~1630cm1,羧酸根-COOH表4為油砂油HNMR譜的化學(xué)位移歸屬及積伸縮振動(dòng)位于1620~1540cm,110-1020cm1分計(jì)算結(jié)果。由表可知,在O1為02~42區(qū)間,低包含了直鏈C-C、C=C、C-OH的伸縮,油砂無(wú)溫?zé)峤舛魏椭饕獰峤舛斡蜕坝头辑h(huán)上α、β和γ位的機(jī)組分中90%以上是SO2,頻率1100cm1和880CH、一CH2及一CH3三者之和,分別占總H量的780cm為SiO-Si的強(qiáng)伸縮振動(dòng),950-90092.52%和92.86%,即油砂油富含側(cè)鏈,其中H1和m較弱的吸收峰可歸屬為烯烴CH2面外搖擺,H之和占三者之和的93.20%和8904%,說(shuō)明側(cè)鏈700cm-左右的峰則由芳環(huán)上的=CH面內(nèi)彎曲中以長(zhǎng)鏈為主;兩溫度段中H2僅占三者之和的6.8%引發(fā)。和10.96%,意味著側(cè)鏈中支鏈較少,油砂油結(jié)構(gòu)支對(duì)不同溫度段所產(chǎn)生的殘?jiān)M(jìn)行紅外分析,發(fā)鏈化程度較低現(xiàn)與原油砂相比,350℃殘?jiān)闹緟^(qū)和羧酸峰位的表5為油砂油CNMR譜的化學(xué)位移歸屬及積吸收振動(dòng)峰減弱圖5(a)],與圖4和表3所述的分計(jì)算結(jié)果。由表可知,兩溫度段的芳碳率分別為第11期白翔等:新疆托里油砂分段熱解機(jī)理4631表4HNMR中各類H的歸屬Table 4 Assignment of hydrogen types in H NMRChemical shift25-350℃350-520℃gen y or further from aromad=0.2-1.0232.09aliphatic hydrogen B or further from aromatic ringHoaliphatic hydrogen a to aromatic ring6=204.2Howphenolic hydrogen6=4.26.04.97H6=6.09.02.51表51CNMR測(cè)得油砂兩段熱解油結(jié)構(gòu)參數(shù)Table 5 Structural parameters of two-stage pyrolysis oil-sand oil inC NMRRelative content/%oType of carbons350℃rminal methyl in alkyl chains6.306-25hylene, methane, -CH2 to saturated hydrocarbon25-36quaternary carbon, a-CH, to aromatic rings36-5124.521722methyl, aromatic carbon to methyl, aliphatic carbon to oxygen51-6ftertiary carbon, proton aromatic carbon115-12129150methyl, carboxyl group, aromatic carbon to phenolic hydroxyl0-188carboxyl carbon to aromatic rings188-220faliphatic carbon weight ratio9208aromatic carbon weight ratio115-150792%和23.51%,說(shuō)明油砂油芳香度較低,油品較圖(圖6),并求算出相關(guān)的動(dòng)力學(xué)參數(shù)(表6)。由輕。f與f(25~36)峰的強(qiáng)度之比分別為0178表可知,方程線性相關(guān)系數(shù)R2均大于0.9,表明和0.104,均大于θ.1②3,表明油砂油結(jié)構(gòu)中脂肪鏈Cσ ats-Redfern法適用于不同熱解段活化能的計(jì)算長(zhǎng)鏈的平均長(zhǎng)度小于10個(gè)碳鏈;b為16~25之間當(dāng)升溫速率從5℃·min升至100℃·min時(shí),低的含量分別為22.83%和19.44%,表明短程烷基側(cè)溫?zé)峤怆A段的活化能與指前因子分別從22.65鏈含量較多,結(jié)合表4油砂油側(cè)鏈支鏈化程度較低,kJ·molr和2.45s1增至3122kJ·mo和11.30說(shuō)明短程烷基側(cè)鏈大多與環(huán)烷和芳環(huán)直接相連。sˉ,主要熱解階段的活化能與指前因子則分別從和f在低溫?zé)峤舛沃蟹謩e為3.09%和482%,84.8J·mo和146×10°s增至9723kJ·mol而在主要熱解段中兩者值較高,分別為13.11%和和7.16×10。從兩段活化能的大小佐證了油砂1040%,這是因?yàn)樵?50℃之前熱解程度較低,而分段劃分的合理性與熱解機(jī)理推測(cè)的可行性從350c升至520時(shí)油砂低溫?zé)峤鈿堅(jiān)l(fā)生了環(huán)3結(jié)論烷烴脫氫芳構(gòu)化反應(yīng),導(dǎo)致兩者值較高,此過(guò)程還伴隨著烴類和氫氣的析出。采用TG非等溫法考察了升溫速率對(duì)油砂熱解25油砂熱解動(dòng)力學(xué)計(jì)算過(guò)程的影響,并研究了其熱解動(dòng)力學(xué),通過(guò)微型固圖6(a)、(b)為不同升溫速率下油砂在120~定床耦合在線質(zhì)譜,揭示了氣體釋出特性,結(jié)合核350℃和350~520℃熱解過(guò)程動(dòng)力學(xué)擬合曲線。結(jié)磁與紅外分析了兩段油砂熱解液固產(chǎn)物,結(jié)論如下。合圖2(b)、表3和圖4可以看出,120~350℃區(qū)(1)新疆托里油砂熱解過(guò)程可分為干燥脫氣間的熱失重歸因于油砂油的脫附,還包括較弱鍵斷0~120℃)、低溫?zé)峤?120~350℃)、主要熱解裂和脫羧反應(yīng)。油砂熱解油氣大量的生成主要發(fā)生(350~520℃)和半焦縮聚(520~600℃4個(gè)階段,在第3段,據(jù) Coats-Redfern法作出相應(yīng)的 Arrhenius其中350~520℃為油砂有機(jī)質(zhì)裂解產(chǎn)油的主要區(qū)間化工學(xué)報(bào)13.813.0-1405℃.min-1樹(shù)-142▲20℃·min120℃·min40℃·min1-136<40℃·min14.014.71.701.751.801.851901952002052.102.151201.251.301.351.401451.5×10°/K71×103/K-1b)圖6油砂在不同升溫速率下低溫?zé)峤夂椭饕獰峤怆A段的 Arrhenius圖Fig 6 Arrhenius diagram of oil sand pyrolysis at different heating rates表6 Coats- Redfern積分法計(jì)算熱解段活化能結(jié)果Table 6 Coats-Redfern integral method to calculate thermal decomposition activation energyLow -temperature pyrolysisHigh-temperature pyrolysis℃·minEkJ·mol217—2572,450.992412-4640.999222-26223.12424-4640.999236-27625413.23430-4707,140.99919897056.020.997925031.15464-5041007031031.22112.300.999468-50897.2371.600.999(2)CO2、CO、CH4、C2lH6、H2的初釋逸出Contemporary Chemical industr(當(dāng)代化工),2008.,29(1:2427溫度分別約為155、178、174、146、354℃[3] Tang Xiaodong(唐曉東), Li Jingjing(李晶晶), Qing Dayong(卿大詠, Zhang Yangyong(張洋勇), Deng Jieyi(鄧杰義). Experimental(3)油砂油在低溫?zé)峤夂椭饕獰峤舛蔚姆继約tudy on solvent extraction and separation of Karamay oil sands [j.率分別為792%和23.51%,說(shuō)明油品均較輕。兩段Applied Chemical Industry(應(yīng)用化工),2104.43(5:874876油砂油結(jié)構(gòu)中富含側(cè)鏈,側(cè)則鏈以小于10個(gè)碳鏈的長(zhǎng)Rm.Si(任副利)Rshe(化學(xué),201.02鏈為主,側(cè)鏈中支鏈化程度較低,短程烷基側(cè)鏈大extraction from oil sands [J]. CIESC Jour多與環(huán)烷環(huán)和芳環(huán)直接相連。S] Xu Xiuqiang(許修強(qiáng), Wang Hongyan(王紅巖), Zheng Dewen(鄭(4)當(dāng)升溫速率由5℃·min增至100es m). Research progress in application of the oil sands J]. Liaoningmin時(shí),低溫?zé)峤舛位罨芘c指前因子分別從1 Strauszo P. Jha K N. Montgomery D S. Chemical composition of22.65kJ·mol和2,45s1增至31.22kJ·mol和gases in Athabasca bitumen and in low-temperature thermolysis of oil112.30s-1,主要熱解段的活化能與指前因子分別sand, asphaltene and maltene [] Fuel, 1977, 56(2): 114-120從84.88J·mol1和1.46×105s1增至97.23Jingjie(劉井杰東). ExperikJ·mol和7.16×10°s-1oil sands dry distillation J]. Chemical Engineering of Oil& Gas(frReferences8] Wang Qing(王擎), Ge jianxin(戈建新). Jia chunxia(賈春霞),XuXiaofei(許曉飛, Liu Hongpeng(劉洪鵬). Influence of retorting endXu Xiuqiang(許修強(qiáng), Zheng Dewen(鄭德溫). Cao Zubing(曹祖temperature on chemical structure of oil-sand oil [J]. CIESC JournalAE). Study on hot water extraction of Xinjiang oil sand []. Journal of化工學(xué)報(bào)),2013,64(11):4216-422Zhengzhou university(鄭州大學(xué)學(xué)報(bào)),2008,29(1):24279] Sun nan(孫楠), Zhang Qiumin(張秋民), Guan jun(關(guān)珺),He[2] He bing(何冰), Zhang huicheng(張會(huì)成), Wang Panpan(王盼盼)olvent extraction separation of Indonesian oil sands [ J]atmosphere [] Journal of Fuel Chemistry and Technology(燃料化第11期白翔等:新疆托里油砂分段熱解機(jī)理4633學(xué)學(xué)報(bào)),2007,35(2):241-244ansactions of Nonferrous Metals Society of China, 2008, 18(1)[10 Meng Meng, Hu Haoquan, Zhang Qiumin, Li Xian, Wu Bo. Pyrolysisbehaviors of Tumuji oil sand by thermogravimetry(TG) and in a[18] Sun Qinglei(孫慶雷), Li Wen(李文, Chen haokan(陳皓侃,Lifixed bed reactor [J]. Energy &e Fuels, 2007, 21(4): 224Baoqing(李保慶 Liu Xuguang(劉旭光). Comparison between[11] Subramanian M, Hanson F V. Supercritical fluid extraction ofDAEM and Coats-Redfern method for combustion kinetics of coalbitumens from Utah oil sands [J]. Fue! Processing Technology, 1998,char [J] Journal of Chemical Industry and Engineering( China)55(1):35-53(化工學(xué)報(bào)).2003,54(111598-1602[12 Li Shuyuan, Wang Jianqiu, Tan Huaping, Wu Zhaoliang. Stud[19 Aboulkas A, El Harfi K. Study of the kinetics and mechanisms ofextraction and pyrolysis of Chinese oil sands J]. Fuel, 1994, 74thermal decomposition of Moroccan Tarfaya oil shale and its kerogen1191-1193]. Oil shale,2008,25(4):426-443[13 Park Young Cheol, Pack Jin-Young, Bac Dal-Hee, Shun Dowon. [20] Uno T, Okuhara T Pyrolysis of coal liquefaction vacuum residue [].lysis kinetics of Alberta oil sand thermogravimetric analysisJournal of Japan Institute of Energy, 1993, 73(10): 1000-1008[] Korean Journal of Chemical Engineering, 2009, 26(6): 1608-1612. [21] Jia Chunxia(A FE). Research on the pyrolysis characteristics and[14] Ma Yue, Li Shuyuan. The pyrolysis, extraction and kinetics of Butoroducts formation mechanism of oil sand [D]. Baoding: North Chinaoil sand bitumen [J]. Fuel Processing Technology, 2012, 100(6Electric Power University, 2014[22] Chen hesheng(陳和生), Sun Zhenya(孫振亞), Shao jingchang(邵[15] Al-Otoom A, Al-Harahsheh M, Allawzi M, et al. Physical and thermaltE). Investigation on FT-IR spectroscopy for eight different sourcesproperties of Jordtar sand []. Fuel Processing Technology,ofSO2J. Bulletin of the Chinese ceramic society(硅酸鹽通報(bào))2013,106(34):10130(4):934-938.6] Zhong wei(鐘巍) Arrhenius theory based numerical algorithm for[23 Mei yuanfei(梅遠(yuǎn)飛). Zhao Xin(趙新). Sun wanfu(孫萬(wàn)賦),Tanghemical kinetics [J]. Chemical Research, 2005, 22(3): 55-59Jun(唐軍), Qiao Aixin(喬愛(ài)新). Spectral analysis of coal tar from[17 Ebrahimi-Kahrizsangi R, Abbasi M H. Evaluation of reliability ofXiaohuangshan region [J]. Chinese Journal of Magnetic ResonanceCoats-Redfern method for kinetic analysis of non-isothermal TGA[I波譜學(xué)雜志,201128(3):339-348
-
C4烯烴制丙烯催化劑 2020-03-24
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-03-24
-
生物質(zhì)能的應(yīng)用工程 2020-03-24
-
我國(guó)甲醇工業(yè)現(xiàn)狀 2020-03-24
-
石油化工設(shè)備腐蝕與防護(hù)參考書十本免費(fèi)下載,絕版珍藏 2020-03-24
-
四噴嘴水煤漿氣化爐工業(yè)應(yīng)用情況簡(jiǎn)介 2020-03-24
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-03-24
-
甲醇制芳烴研究進(jìn)展 2020-03-24
-
精甲醇及MTO級(jí)甲醇精餾工藝技術(shù)進(jìn)展 2020-03-24








