我与乡下少妇的性事_色琪琪综合男人的天堂aⅴ视频_大胸喂奶秘书3p高h_国产一区二区视频在线播放_国产老头gay和老头gay视频_中文字幕亚洲欧美_国产男人搡女人免费视频_伊人色综合久久天天五月婷_崔雪莉被金秀贤握胸动态图_毛片在线视频观看

首頁 > 資料下載 > 加拿大的城市和智能電網(wǎng)Cities and Smart Grids in Canada
加拿大的城市和智能電網(wǎng)Cities and Smart Grids in Canada 加拿大的城市和智能電網(wǎng)Cities and Smart Grids in Canada

加拿大的城市和智能電網(wǎng)Cities and Smart Grids in Canada

  • 資料類別:
  • 資料大小:
  • 資料編號:
  • 資料狀態(tài):
  • 更新時間:2021-09-09
  • 下載次數(shù):
資料簡介

加拿大的電力部門在滿足該國的經(jīng)濟,社會和環(huán)境需求方面發(fā)揮著核心作用。為了適應包括供需壓力在內(nèi)的新興趨勢,并在日益受到碳限制的世界中保持競爭力,加拿大的電力部門必須現(xiàn)代化并做出適當?shù)耐顿Y決策。為此,未來幾十年將是至關(guān)重要的,應避免可能會破壞世紀中期脫碳目標的電力部門鎖定效應。該報告專門針對加拿大電網(wǎng)現(xiàn)代化和城市環(huán)境下的智能電網(wǎng)。在這種情況下,我們注意到快速老化的電力基礎(chǔ)設施為實現(xiàn)電網(wǎng)現(xiàn)代化與氣候目標之間的協(xié)同增效提供了獨特的機會。這些努力的中心支柱必須是部署智能電網(wǎng)解決方案。這些解決方案將在增加脫碳機會方面發(fā)揮重要作用,尤其是在運輸和供熱部門中,這是加拿大最大的溫室氣體排放源之一。其次,它們通過支持能源效率并允許消費者向電網(wǎng)回購來為客戶提供價值。最后,它們可以解決供應方的壓力,尤其是在加拿大的集聚趨勢的背景下。以下情況為研究得出了結(jié)論和建議:?加拿大的城市在人口和地理空間方面都在增長。這就帶來了雙重挑戰(zhàn),即要解決城市核心地區(qū)日益增長的需求,同時又要為不斷增長的郊區(qū)提供住宅和商業(yè)區(qū)。 ?傳統(tǒng)上,發(fā)電由主要設施(例如,燃煤電廠,水壩,核設施)組成,這些設施通過分布在較長地理區(qū)域上的高壓輸電線路連接到需求源。 ?展望未來,預計能源生產(chǎn)和分配將發(fā)生變化。這將由許多因素驅(qū)動,包括:可靠性和安全性問題(長輸電線對極端天氣的脆弱性);鼓勵低碳能源生產(chǎn)的政策(太陽能電池板和風力渦輪機);社會對大型電力項目的抵制;人們對替代能源生產(chǎn)和分配來源(例如區(qū)域供熱和生產(chǎn)者)的需求日益增長。 ?緩解氣候變化政策將影響電力部門的業(yè)務決策。已經(jīng)提到了逐步淘汰煤炭和碳定價,但是還有其他因素在起作用。政府最近在《 2017年預算》中對化石燃料補貼改革和可再生能源投資的承諾,將成為現(xiàn)有清潔能源趨勢的潤滑劑。能源價格上漲將推動投資決策,也將推動消費決策。一個例子就是電動汽車的增長,這正在推動電力需求,特別是在城市環(huán)境中。采訪表明,到目前為止,這種需求是可以控制的,但它在長期規(guī)劃中帶來了不確定性。 ?氣候變化將對需求和資源產(chǎn)生影響。溫度變化以及相關(guān)的用水困難會影響能源生產(chǎn)效率,而夏季的用電需求將會增加。加拿大的某些地區(qū)有可能從冬季公用事業(yè)向夏季公用事業(yè)急劇轉(zhuǎn)變。鑒于電力供應著大量的空調(diào)需求,而天然氣提供了大量的供暖,這可以從根本上改變加拿大的能源系統(tǒng)。消費者對公用事業(yè)的期望正在發(fā)生變化。消費者的期望可能越來越多地包括能源生產(chǎn)的經(jīng)濟,社會和環(huán)境影響。一些消費者希望獲得有關(guān)其用電量的更多信息。其他人則希望能夠成為新的清潔技術(shù)的早期采用者;鑒于與化石燃料來源相關(guān)的成本增加,還有一些人最擔心獲得能源。這導致公用事業(yè)需要采用新的業(yè)務模型。我們注意到在啟用智能電網(wǎng)的電力系統(tǒng)中出現(xiàn)了四種新興業(yè)務模型(請參閱表ES1)。

Canada’s electricity sector plays a central role in supporting the country’s economic, social and environmental needs. In order to meet emerging trends, including supply and demand pressures, and to remain competitive in a world that is becoming increasingly carbon constrained, Canada’s electricity sector must modernize and make appropriate investment decisions. To this end, coming decades will be critical and lock-in effects in the electricity sector that can undermine mid-century decarbonization objectives should be avoided. This report looks specifically at smart grids within the context of grid modernization and urban settings in Canada. In this context, we note that the rapidly aging electricity infrastructure provides a unique opportunity to achieve synergies found between grid modernization and climate objectives. A central pillar of these efforts must be deployment of smart grid solutions. These solutions will have an important role in enhancing decarbonization opportunities, especially in the transportation and heating sectors—two of Canada’s largest sources of greenhouse gas emissions. Second, they provide value for costumers by supporting energy efficiency and by allowing consumers to sell back to the grid. Finally, they can address supply-side pressures, especially in the context of agglomeration trends in Canada. The following context has informed the research’s conclusions and recommendations: ? Canada’s cities are growing both in terms of population and geographic space. This is leading to the dual challenge of addressing increased demand in city core areas while simultaneously having to supply residential and commercial areas in ever growing suburban areas. ? Traditionally, electricity generation has consisted of major facilities (e.g., coal plants, hydro dams, nuclear facilities) connected to demand sources through high-voltage transmission lines running over long geographical areas. ? Going forward, a shift in energy production and distribution is anticipated. This will be driven by a number of factors, including: reliability and security concerns (vulnerability of long transmission lines to extreme weather); policies that incentivize low-carbon energy production (solar panels and wind turbines); increasing social resistance to large power projects; and a growing desire for alternative approaches to energy generation and distribution sources (e.g., district heating and prosumers). ? Climate change mitigation policies will affect business decisions in the electricity sector. Coal phase-out and carbon pricing were already mentioned, but there are additional factors at play. Recent commitments of the government in Budget 2017 to fossil fuel subsidy reform and renewable energy investment will act as lubricant to the existing trend to cleaner energy. Increasing energy prices will drive investment decisions, but also consumption decisions. An example is the growth in electric vehicles, which is driving electricity demand, particularly in urban settings. Interviews indicate that this demand is manageable thus far, but it is driving uncertainty in long-term planning. ? Climate change will have an impact on demand and resources. Temperature changes, and associated water accessibility challenges, can affect energy production efficiency, while demand for electricity in summer months will increase. There is potential for some areas of Canada to shift dramatically from winter-peaking utilities to summer-peaking ones. Given that electricity supplies the massive demand for air conditioning, while a great deal of heating is provided by natural gas, this can fundamentally shift the energy system in Canada. Consumers’ expectations of utilities is changing. Consumers’ expectations are likely to increasingly include economic, social and environmental impacts of energy production. Some consumers want greater information about their power use; others want the ability to become early adopters of new, clean technology; while still others are most concerned about access to energy in light of increased costs associated with fossil fuel sources. This has led to the need for utilities to adopt new business models. We note four emerging business models in the smart grid-enabled electricity systems (see Table ES1).

資料截圖
版權(quán):如無特殊注明,文章轉(zhuǎn)載自網(wǎng)絡,侵權(quán)請聯(lián)系cnmhg168#163.com刪除!文件均為網(wǎng)友上傳,僅供研究和學習使用,務必24小時內(nèi)刪除。